PAPER 2

1. (a) Whatis a flowchart? Explain the different symbols used in a flowchart.
A flowchart is the pictorial representation of an algorithm. The various steps in an
algorithm are drawn in the form of prescribed symbols. The flow of the algorithm is
maintained in a flowchart. The various symbols used in a flowchart are as below. The name
of the symbol is given inside the symbol itself.

Process
Assignment
Output Terminator
Internal document (Start/Stop)
storage

Page

Input from Connector

keyboard

Disk Monitor

storage
(database)

output

C.10 Model Question Papers

1. (b) Write a flowchart to find the maximum and minimum of given numbers.

Input A, B

Write
Ais
maximum,
Bis
minimum

Write
Bis
maximum,
Ais
minimum

2. (a) What do you mean by functions? Give the structure of the functions and explain
about the arguments and their return values.
A C program has always a main module (called main) where the execution of the program
begins and ends. If a program is very big and if we write all the statements of that big
program in main itself, the program may become tool complex and large. As a result, the
task of debugging and maintaining will become very difficult. On the other hand, if we split
the program into several functional portions, these are easier. These subprograms are called
functions.
The structure of a function is:

Function name (argument)
Argument declaration;
{

local variables declaration;

Executable statements;

Return value;
}
Arguments—the arguments are valid variable names separated by commas. The argument
variables receive values from a calling function. Thus they provide as the link between the
main program and the function.
Return values—a function may or may not send a value back to the calling function. This
value which is sent to the calling function is the return value of the function. It is achieved
through the return keyword. There can be only one value in a return statement.

Model Question Papers C.11

2.

3k

(b) Write a C program that uses a function to sort an array of integers.

(a)
1.

(b)

main()
{
int i;
static int data[6] = {20, 10, 5, 12, 13, 3};
printf(“\nList before sorting”};
for (i=0; i < 6; i++)
printf(“%d, “ datali]);
sort(data, 6);
printf(“\nList after sorting”};
for (i=0; i < 6; i++)
printf(“%d, “ datali]);
}
sort(arr, n)
int arrf], n;

{
int j, k, temp;
for(j=1;j<=n—1;j++)
for (k =1; k <= m —j; k++)
if (arrfk — 1] >= arr[k])

temp = arr[k — 1];
arr[k — 1] = arr[k];
arr[k] = temp;

}

Explain the advantages of structure type over the array type variable.

An array type variable can store only homogeneous data i.e. it can store only values of data
types according to which the variable is declared. For example, an integer array can store
only integer numbers. This limitation is not there in a structure variable. A structure
variable can host many data types at the same time.

An array type is subjected to lower and upper bounds limitations. If we try to read or write
past these bounds, we will get error. This is not a limitation in structure variable.

. A structure variable can host an array variable also.

Define a structure that represent a complex number (contains two floating-point
members, called real and imaginary). Write a C program to add, subtract and
multiply two complex numbers.

struct complexnumber

{

float real;
float imaginary;

B

main()

{
struct complexnumber c1, c2, add, sub, mult;
printf(\nEnter complex number 1 (Real imaginary)”);
scanf(“%f %f”’,&c1.real, &c1. imaginary);

C.12 Model Question Papers

printf(\nEnter complex number 2 (Real imaginary)”);

scanf(“%f %f”’,&c2.real, &c2. imaginary);

add.real = c1.real + c2.real;

add.imaginary = c1.imaginary + c2.imaginary;

sub.real = c1.real - c2.real;

sub.imaginary = c1.imaginary - c2.imaginary;

mult.real = c1.real * c2.real;

mult.imaginary = c1.imaginary * c2.imaginary;

printf(\nSum is Real %f imaginary %f”, add.real, add.imaginary);
printf(“\nDiff is Real %f imaginary %f”, sub.real, sub.imaginary);

printf(\nProduct is Real %f imaginary %f’, mult.real,

mult.imaginary);

}

4. The roots of a quadratic equation of the form ax” + bx + ¢ = 0 are given by the following

equations:

X1=-b+ root(b2 —4ac) / 2a;
X2 =-b - root(b2 —4ac) / 2a;
Write a function to calculate the roots. The function must use two pointers, one to receive
the coefficients and the other to send the roots to the calling function.
#include <math.h>
struct equation

{
B

float a, b, c;

struct roots

{
B

float x1, x2;

void findroots();
main()

{

}

struct equation myeq;

struct roots myroots;

printf(“\nEnter values for a, b and c”);

scanf(“%f %f %f’, &myeq.a, &myeq.b, &myeq.c);
findroots(&myeq, &myroots);

printf(\nRoots are X1 = %f, X2 = %f”, myroots.x1, myroots.x2);

void findroots(struct equation *myeqarg, struct roots *myrootarg)

{

float a, b, c, discr, ai;
a = myeqarg->a;
b = myeqarg->b;
Cc = myeqarg->c;

discr=b*b-4.0*a*c;

myrootarg->x1 = (-b + sqrt(discr)) / (2.0 * a);
myrootarg->x2 = (-b - sqrt(discr)) / (2.0 * a);

Model Question Papers C.13

5. Define a file and elaborately discuss about reading, opening and closing of a file.
If we want to store data in a file in the secondary memory, we must specify certain things about
the file, to the operating system. They include:
1. Filename.
2. Data structure.
3. Purpose.
Filename is a string of characters that make up a valid filename for the operating system. It
may contain two parts, a primary name and an optional period with the extension. Examples:
Input.data
store
PROG.C
Student ¢
Text.out
Data structure of a file is defined as FILE in the library of standard I/O function definitions.
Therefore, all files should be declared as type FILE before they are used. FILE is a defined data
type.
When we open a file, we must specify what we want to do with the file. For example, we may
write data to the file or read the already existing data.
Following is the general format for declaring and opening a file:

FILE *fp;
fp = fopen(“filename”, “mode”);

The first statement declares the variable fp as a “pointer to the data type FILE”. As stated
earlier. FILE is a structure that is defined in the I/O library. The second statement opens the file
named filename and assigns an identifier to the FILE type pointer fp. This pointer which con-
tains all the information about the file is subsequently used as a communication link between the
system and the program.

The second statement also specifies the purpose of opening this file. The mode does this job.
Mode can be one of the following:

r open the file for reading only.

w open the file for writing only.

a open the file for appending (or adding) data to it.

Note that both the filename and mode are specified as strings. They should be enclosed in
double quotation marks.
When trying to open a file, one of the following things may happen:
1. When the mode is ‘writing’ a file with the specified name is created if the file does not
exist. The contents are deleted, if the file already exists.
2. When the purpose is ‘appending’, the file is opened with the current contents safe. A file
with the specified name is created if the file does not exist.
3. If the purpose is ‘reading’, and if it exists, then the file is opened with the current contents
safe; otherwise an error occurs.
Consider the following statements:

C.14 Model Question Papers

The file data is opened for reading and results is opened for writing. In case, the results file
already exists, its contents are deleted and the file is opened as a new file. If data file does not

exist, an error will occur.
Many recent compilers

FILE *p1, *p2;
p1 = fopen(“data”,
p2 =fopen(“results

r

include additional modes of operation. They include:
r+ The existing file is opened to the beginning for both reading and writing.

w+ Same as w except both for reading and writing.
a+ Same as a except both for reading and writing.

We can open and use a number of files at a time. This number however depends on the system

W€ use.

Write a program that uses a stack to check for matching left and right parentheses, left
and right braces, and left and right brackets in a string of characters.

#include<stdio.h>
#define MAXSIZE 50

static struct stack

{

int top;

int numbers[MAXSIZE];
} mystack;

void push(struct stack *,int);
int pop(struct stack®);

int isempty(struct stack®);
main()

{

char expression[MAXSIZE];
inti=-1;

int number;

mystack.top = -1;

printf(\nEnter the expression —>);
scanf(“%s”,expression);
while(expression[++i] = \0’)
{
switch (expression[i])
{
case ‘(‘ : push(&mystack,’();
break;
case ‘)’ : number = pop(&mystack);
break;
case ' : push(&mystack,’[);
break;
case ‘I : number = pop(&mystack);
break;
case ‘{‘ : push(&mystack,’{");
break;
case ‘}’ : number = pop(&mystack);

Model Question Papers C.15

break;

1
1
if (lisempty(&mystack))

printf(“\nExpression has unmatched parenthesis”);
else

printf(“\nExpression is okay”);

}

void push(struct stack *mystack,int number)

{
if (mystack->top==MAXSIZE-1)
{
printf(“\nStack Overflow\n”);
exit(1);
}

mystack->numbers[++mystack->top]=number;

}

int pop(struct stack *mystack)

{
if (isempty(mystack))
{
printf(“\nStack Underflow\n”);
exit(1);
}

return(mystack->numbers[mystack->top—I]);

}

int isempty(struct stack *mystack)

{
}

7. How can a polynomial in three variables (x, y and z) be represented by a singly linked
list? Each node in a list should represent a term and should contain the powers of x, y and
z as well as the coefficient of that term.
Such a polynomial can be represented with a linked list in the same way as we represent a
polynomial with a single variable. Each node in the list will have the following structure:

return((mystack->top==-1));

| COEFFICIENT | X-POWER | Y-POWER | Z-POWER | NEXT ADDR

Consider a simple polynomial P(x, y, z) = 10x*y*z% + 15 xy> + 5 yz>. Please do not worry about
the validity of this polynomial. The idea is to explain the representation. This can be represented
as follows:

. o [4 [3 | 2 |
| 151 1 | 2 | 0 |
| 5 | o0 | 1 | 3 NULL

C.16 Model Question Papers

8. Explain the algorithm for selection sort and give a suitable example.
As the name suggests, the first element of the list is selected. It is compared repeatedly with all
the elements. If any element is found to be lesser than the selected element, these two are
swapped. This procedure is repeated till the entire array is sorted. Let us understand this with a
simple example. Consider the list 74, 39, 35, 32, 97, 84. Following is the table, which gives the

status of the list after each pass is completed.

Pass

List after pass

1

32, 39, 35, 74, 97, 84

32, 35, 39, 74, 97, 84

32, 35, 39, 74, 97, 84

32, 35, 39, 74, 97, 84

|| WIN

32, 35, 39, 74, 84, 97

C program for selection sort

Let us assume that an array named elements[] will hold the array to be sorted and maxsize is the
number of elements to be sorted. We will also assume that the sorting order is ascending in nature.
#include <stdlib.h>
#include <stdio.h>

#define MAXSIZE 500

void selection(int elements[], int maxsize);

int elements[MAXSIZE],maxsize;

int

{

main()

int i;

printf(“\nHow many elements you want to sort: “);

scanf(“%d”,&maxsize);

printf(\nEnter the values one by one: “);
for (i = 0; i < maxsize; i++)

printf (\nEnter element %i :",i);
scanf(“%d”,&elementsi]);

printf(“\nArray before sorting:\n”);
for (i = 0; i < maxsize; i++)
printf(“[%i], “,elements]i]);

printf (“\n”);

selection(elements, maxsize);

printf(“\nArray after sorting:\n”);

for (i = 0; i < maxsize; i++)
printf(“[%i], “, elements]i]);

}

void selection(int elements[], int array_size)

{
inti, j, k;

Model Question Papers C.17

int min, temp;

for (i = 0; i < maxsize-1; i++)
{

min = i;

for (j = i+1;] < maxsize; j++)

if (elements[j] < elements[min])
min = j;

}

temp = elementsi];

elements][i] = elements[min];

elements[min] = temp;

}
}

Let us now analyze the efficiency of the selection sort. You can easily understand from the algorithm
that the first pass of the program does (maxsize — 1) comparisons. The next pass does (maxsize — 2)
comparisons and so on. Thus, the total number of comparisons at the end of the sort would be :

(maxsize — 1) + (maxsize — 2) + ... + | = maxsize * (maxsize — 1) /2 = O(maxsizez).

