

2.	Expressions

This chapter introduces the built-in C++ operators for composing expressions. An expression is any computation which yields a value.

	When discussing expressions, we often use the term evaluation. For example, we say that an expression evaluates to a certain value. Usually the final value is the only reason for evaluating the expression. However, in some cases, the expression may also produce side-effects. These are permanent changes in the program state. In this sense, C++ expressions are different from mathematical expressions.

	C++ provides operators for composing arithmetic, relational, logical, bitwise, and conditional expressions. It also provides operators which produce useful side-effects, such as assignment, increment, and decrement. We will look at each category of operators in turn. We will also discuss the precedence rules which govern the order of operator evaluation in a multi-operator expression.

Arithmetic Operators

C++ provides five basic arithmetic operators. These are summarized in Table 2.�seq table ArithmeticOps�1�.

Table 2.�seq table�1�	Arithmetic operators.

Operator�Name�Example��+�Addition�12 + 4.9	// gives 16.9��-�Subtraction�3.98 - 4	// gives -0.02��*�Multiplication�2 * 3.4	// gives 6.8��/�Division�9 / 2.0	// gives 4.5��%�Remainder�13 % 3		// gives 1��

	Except for remainder (%) all other arithmetic operators can accept a mix of integer and real operands. Generally, if both operands are integers then the result will be an integer. However, if one or both of the operands are reals then the result will be a real (or double to be exact).

	When both operands of the division operator (/) are integers then the division is performed as an integer division and not the normal division we are used to. Integer division always results in an integer outcome (i.e., the result is always rounded down). For example:

9 / 2		// gives 4, not 4.5!

-9 / 2		// gives -5, not -4!

	Unintended integer divisions are a common source of programming errors. To obtain a real division when both operands are integers, you should cast one of the operands to be real:

int		cost = 100;

int		volume = 80;

double	unitPrice = cost / (double) volume;		// gives 1.25

	The remainder operator (%) expects integers for both of its operands. It returns the remainder of integer-dividing the operands. For example 13%3 is calculated by integer dividing 13 by 3 to give an outcome of 4 and a remainder of 1; the result is therefore 1.

	It is possible for the outcome of an arithmetic operation to be too large for storing in a designated variable. This situation is called an overflow. The outcome of an overflow is machine-dependent and therefore undefined. For example:

unsigned char	k = 10 * 92;		// overflow: 920 > 255

	It is illegal to divide a number by zero. This results in a run-time division-by-zero failure which typically causes the program to terminate.	(

Relational Operators

C++ provides six relational operators for comparing numeric quantities. These are summarized in Table 2.�seq table RelationalOps�2�. Relational operators evaluate to 1 (representing the true outcome) or 0 (representing the false outcome).

Table 2.�seq table�2�	Relational operators.

Operator�Name�Example��==�Equality�5 == 5		// gives 1��!=�Inequality�5 != 5		// gives 0��<�Less Than�5 < 5.5	// gives 1��<=�Less Than or Equal�5 <= 5		// gives 1��>�Greater Than�5 > 5.5	// gives 0��>=�Greater Than or Equal �6.3 >= 5	// gives 1��

	Note that the <= and >= operators are only supported in the form shown. In particular, =< and => are both invalid and do not mean anything.

	The operands of a relational operator must evaluate to a number. Characters are valid operands since they are represented by numeric values. For example (assuming ASCII coding):

'A' < 'F'		// gives 1 (is like 65 < 70)

	The relational operators should not be used for comparing strings, because this will result in the string addresses being compared, not the string contents. For example, the expression

"HELLO" < "BYE"

causes the address of "HELLO" to be compared to the address of "BYE". As these addresses are determined by the compiler (in a machine-dependent manner), the outcome may be 0 or may be 1, and is therefore undefined.

	C++ provides library functions (e.g., strcmp) for the lexicographic comparison of string. These will be described later in the book.

		(

Logical Operators

C++ provides three logical operators for combining logical expression. These are summarized in Table 2.�seq table LogicalOps�3�. Like the relational operators, logical operators evaluate to 1 or 0.

Table 2.�seq table�3�	Logical operators.

Operator�Name�Example��!�Logical Negation�!(5 == 5)		// gives 0��&&�Logical And�5 < 6 && 6 < 6	// gives 1��||�Logical Or�5 < 6 || 6 < 5	// gives 1��

	Logical negation is a unary operator, which negates the logical value of its single operand. If its operand is nonzero it produce 0, and if it is 0 it produces 1.

	Logical and produces 0 if one or both of its operands evaluate to 0. Otherwise, it produces 1. Logical or produces 0 if both of its operands evaluate to 0. Otherwise, it produces 1.

	Note that here we talk of zero and nonzero operands (not zero and 1). In general, any nonzero value can be used to represent the logical true, whereas only zero represents the logical false. The following are, therefore, all valid logical expressions:

!20					// gives 0

10 && 5				// gives 1

10 || 5.5			// gives 1

10 && 0				// gives 0

	C++ does not have a built-in boolean type. It is customary to use the type int for this purpose instead. For example:

int	sorted = 0;		// false

int	balanced = 1;	// true

		(

Bitwise Operators

C++ provides six bitwise operators for manipulating the individual bits in an integer quantity. These are summarized in Table 2.�seq table BitwiseOps�4�.

Table 2.�seq table�4�	Bitwise operators.

Operator�Name�Example��~�Bitwise Negation�~'\011'		// gives '\366'��&�Bitwise And�'\011' & '\027'	// gives '\001'��|�Bitwise Or�'\011' | '\027'	// gives '\037'��^�Bitwise Exclusive Or�'\011' ^ '\027'	// gives '\036'��<<�Bitwise Left Shift�'\011' << 2		// gives '\044'��>>�Bitwise Right Shift�'\011' >> 2		// gives '\002'��

	Bitwise operators expect their operands to be integer quantities and treat them as bit sequences. Bitwise negation is a unary operator which reverses the bits in its operands. Bitwise and compares the corresponding bits of its operands and produces a 1 when both bits are 1, and 0 otherwise. Bitwise or compares the corresponding bits of its operands and produces a 0 when both bits are 0, and 1 otherwise. Bitwise exclusive or compares the corresponding bits of its operands and produces a 0 when both bits are 1 or both bits are 0, and 1 otherwise.

	Bitwise left shift operator and bitwise right shift operator both take a bit sequence as their left operand and a positive integer quantity n as their right operand. The former produces a bit sequence equal to the left operand but which has been shifted n bit positions to the left. The latter produces a bit sequence equal to the left operand but which has been shifted n bit positions to the right. Vacated bits at either end are set to 0.

	Table 2.�seq table BitCalculations�5� illustrates bit sequences for the sample operands and results in Table 2.�seq table BitwiseOps�4�. To avoid worrying about the sign bit (which is machine dependent), it is common to declare a bit sequence as an unsigned quantity:

unsigned char x = '\011';

unsigned char y = '\027';

Table 2.�seq table�5�	How the bits are calculated.

Example�Octal Value�Bit Sequence��x�011�0�0�0�0�1�0�0�1��y�027�0�0�0�1�0�1�1�1��~x�366�1�1�1�1�0�1�1�0��x & y�001�0�0�0�0�0�0�0�1��x | y�037�0�0�0�1�1�1�1�1��x ^ y�036�0�0�0�1�1�1�1�0��x << 2�044�0�0�1�0�0�1�0�0��x >> 2�002�0�0�0�0�0�0�1�0��		(

Increment/Decrement Operators

The auto increment (++) and auto decrement (--) operators provide a convenient way of, respectively, adding and subtracting 1 from a numeric variable. These are summarized in Table 2.�seq table IncDecOps�6�. The examples assume the following variable definition:

int	k = 5;

Table 2.�seq table�6�	Increment and decrement operators.

Operator�Name�Example��++�Auto Increment (prefix)�++k + 10		// gives 16��++�Auto Increment (postfix)�k++ + 10		// gives 15��--�Auto Decrement (prefix)�--k + 10		// gives 14��--�Auto Decrement (postfix)�k-- + 10		// gives 15��

	Both operators can be used in prefix and postfix form. The difference is significant. When used in prefix form, the operator is first applied and the outcome is then used in the expression. When used in the postfix form, the expression is evaluated first and then the operator applied.

	Both operators may be applied to integer as well as real variables, although in practice real variables are rarely useful in this form.

		(

Assignment Operator

The assignment operator is used for storing a value at some memory location (typically denoted by a variable). Its left operand should be an lvalue, and its right operand may be an arbitrary expression. The latter is evaluated and the outcome is stored in the location denoted by the lvalue.

	An lvalue (standing for left value) is anything that denotes a memory location in which a value may be stored. The only kind of lvalue we have seen so far in this book is a variable. Other kinds of lvalues (based on pointers and references) will be described later in this book.

	The assignment operator has a number of variants, obtained by combining it with the arithmetic and bitwise operators. These are summarized in Table 2.�seq table AssignmentOps�7�. The examples assume that n is an integer variable.

Table 2.�seq table�7�	Assignment operators.

Operator�Example�Equivalent To��=�n = 25���+=�n += 25�n = n + 25��-=�n -= 25�n = n - 25��*=�n *= 25�n = n * 25��/=�n /= 25�n = n / 25��%=�n %= 25�n = n % 25��&=�n &= 0xF2F2�n = n & 0xF2F2��|=�n |= 0xF2F2�n = n | 0xF2F2��^=�n ^= 0xF2F2�n = n ^ 0xF2F2��<<=�n <<= 4�n = n << 4��>>=�n >>= 4�n = n >> 4��

	An assignment operation is itself an expression whose value is the value stored in its left operand. An assignment operation can therefore be used as the right operand of another assignment operation. Any number of assignments can be concatenated in this fashion to form one expression. For example:

int m, n, p;

m = n = p = 100;			// means: n = (m = (p = 100));

m = (n = p = 100) + 2;	// means: m = (n = (p = 100)) + 2;

This is equally applicable to other forms of assignment. For example:

m = 100;

m += n = p = 10;			// means: m = m + (n = p = 10);

		(

Conditional Operator

The conditional operator takes three operands. It has the general form:

	operand1 ? operand2 : operand3

First operand1 is evaluated, which is treated as a logical condition. If the result is nonzero then operand2 is evaluated and its value is the final result. Otherwise, operand3 is evaluated and its value is the final result. For example:

int m = 1, n = 2;

int min = (m < n ? m : n);		// min receives 1

	Note that of the second and the third operands of the conditional operator only one is evaluated. This may be significant when one or both contain side-effects (i.e., their evaluation causes a change to the value of a variable). For example, in

int min = (m < n ? m++ : n++);

m is incremented because m++ is evaluated but n is not incremented because n++ is not evaluated.

	Because a conditional operation is itself an expression, it may be used as an operand of another conditional operation, that is, conditional expressions may be nested. For example:

int m = 1, n = 2, p =3;

int min = (m < n	 ? (m < p ? m : p)

				 : (n < p ? n : p));

		(

Comma Operator

Multiple expressions can be combined into one expression using the comma operator. The comma operator takes two operands. It first evaluates the left operand and then the right operand, and returns the value of the latter as the final outcome. For example:

int m, n, min;

int mCount = 0, nCount = 0;

//...

min = (m < n ? mCount++, m : nCount++, n);

Here when m is less than n, mCount++ is evaluated and the value of m is stored in min. Otherwise, nCount++ is evaluated and the value of n is stored in min.

		(

The sizeof Operator

C++ provides a useful operator, sizeof, for calculating the size of any data item or type. It takes a single operand which may be a type name (e.g., int) or an expression (e.g., 100) and returns the size of the specified entity in bytes. The outcome is totally machine-dependent. Listing 2.�seq listing SizeofExample�1� illustrates the use of sizeof on the built-in types we have encountered so far.

Listing 2.�seq listing�1�

1

2

3

4

5

6

7

8

9

10

11

12

13

14 �#include <iostream.h>

int main (void)

{

	cout << "char size = " << sizeof(char) << " bytes\n";

	cout << "char* size = " << sizeof(char*) << " bytes\n";

	cout << "short size = " << sizeof(short) << " bytes\n";

	cout << "int size = " << sizeof(int) << " bytes\n";

	cout << "long size = " << sizeof(long) << " bytes\n";

	cout << "float size = " << sizeof(float) << " bytes\n";

	cout << "double size = " << sizeof(double) << " bytes\n";

 cout << "1.55 size = " << sizeof(1.55) << " bytes\n";

	cout << "1.55L size = " << sizeof(1.55L) << " bytes\n";

	cout << "HELLO size = " << sizeof("HELLO") << " bytes\n";

}��

	When run, the program will produce the following output (on the author’s PC):

char size = 1 bytes

char* size = 2 bytes

short size = 2 bytes

int size = 2 bytes

long size = 4 bytes

float size = 4 bytes

double size = 8 bytes

1.55 size = 8 bytes

1.55L size = 10 bytes

HELLO size = 6 bytes

		(

Operator Precedence

The order in which operators are evaluated in an expression is significant and is determined by precedence rules. These rules divide the C++ operators into a number of precedence levels (see Table 2.�seq table PrecedenceLevels�8�). Operators in higher levels take precedence over operators in lower levels.

Table 2.�seq table�8�	Operator precedence levels.

Level���Operator����Kind�Order��Highest�::������Unary�Both���()�[]�->�.���Binary�Left to Right���+

-�++

--�!

~�*

&�new

delete�sizeof

()�Unary�Right to Left���->*�.*�����Binary�Left to Right���*�/�%����Binary�Left to Right���+�-�����Binary�Left to Right���<<�>>�����Binary�Left to Right���<�<=�>�>=���Binary�Left to Right���==�!=�����Binary�Left to Right���&������Binary�Left to Right���^������Binary�Left to Right���|������Binary�Left to Right���&&������Binary�Left to Right���||������Binary�Left to Right���? :������Ternary�Left to Right���=

�+=

-=�*=

/=�^=

%=�&=

|=�<<=

>>=�Binary�Right to Left��Lowest�,������Binary�Left to Right��

For example, in

a == b + c * d

c * d is evaluated first because * has a higher precedence than + and ==. The result is then added to b because + has a higher precedence than ==, and then == is evaluated. Precedence rules can be overridden using brackets. For example, rewriting the above expression as

a == (b + c) * d

causes + to be evaluated before *.

	Operators with the same precedence level are evaluated in the order specified by the last column of Table 2.�seq table PrecedenceLevels�8�. For example, in

a = b += c

the evaluation order is right to left, so first b += c is evaluated, followed by a = b.	(

Simple Type Conversion

A value in any of the built-in types we have see so far can be converted (type-cast) to any of the other types. For example:

(int) 3.14		// converts 3.14 to an int to give 3

(long) 3.14		// converts 3.14 to a long to give 3L

(double) 2		// converts 2 to a double to give 2.0

(char) 122		// converts 122 to a char whose code is 122

(unsigned short) 3.14	// gives 3 as an unsigned short

	As shown by these examples, the built-in type identifiers can be used as type operators. Type operators are unary (i.e., take one operand) and appear inside brackets to the left of their operand. This is called explicit type conversion. When the type name is just one word, an alternate notation may be used in which the brackets appear around the operand:

int(3.14)		// same as: (int) 3.14

	In some cases, C++ also performs implicit type conversion. This happens when values of different types are mixed in an expression. For example:

double	d = 1;			// d receives 1.0

int		i = 10.5;		// i receives 10

i = i + d;				// means: i = int(double(i) + d)

In the last example, i + d involves mismatching types, so i is first converted to double (promoted) and then added to d. The result is a double which does not match the type of i on the left side of the assignment, so it is converted to int (demoted) before being assigned to i.

	The above rules represent some simple but common cases for type conversion. More complex cases will be examined later in the book after we have discussed other data types and classes.

		(

Exercises

2.�seq exercise�1�	Write expressions for the following:

�SYMBOL 183 \f "Symbol" \s 10 \h�	To test if a number n is even.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To test if a character c is a digit.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To test if a character c is a letter.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To do the test: n is odd and positive or n is even and negative.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To set the n-th bit of a long integer f to 1.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To reset the n-th bit of a long integer f to 0.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To give the absolute value of a number n.

�SYMBOL 183 \f "Symbol" \s 10 \h�	To give the number of characters in a null-terminated string literal s.

2.�seq exercise�2�	Add extra brackets to the following expressions to explicitly show the order in which the operators are evaluated:

(n <= p + q && n >= p - q || n == 0)

(++n * q-- / ++p - q)

(n | p & q ^ p << 2 + q)

(p < q ? n < p ? q * n - 2 : q / n + 1 : q - n)

2.�seq exercise�3�	What will be the value of each of the following variables after its initialization:

double	d = 2 * int(3.14);

long	k = 3.14 - 3;

char	c = 'a' + 2;

char	c = 'p' + 'A' - 'a';

2.�seq exercise�4�	Write a program which inputs a positive integer n and outputs 2 raised to the power of n.

2.�seq exercise�5�	Write a program which inputs three numbers and outputs the message Sorted if the numbers are in ascending order, and outputs Not sorted otherwise.

		(

�PAGE�28�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 2: Expressions	�PAGE�29�

