

3.	Statements

This chapter introduces the various forms of C++ statements for composing programs. Statements represent the lowest-level building blocks of a program. Roughly speaking, each statement represents a computational step which has a certain side-effect. (A side-effect can be thought of as a change in the program state, such as the value of a variable changing because of an assignment.) Statements are useful because of the side-effects they cause, the combination of which enables the program to serve a specific purpose (e.g., sort a list of names).

	A running program spends all of its time executing statements. The order in which statements are executed is called flow control (or control flow). This term reflect the fact that the currently executing statement has the control of the CPU, which when completed will be handed over (flow) to another statement. Flow control in a program is typically sequential, from one statement to the next, but may be diverted to other paths by branch statements. Flow control is an important consideration because it determines what is executed during a run and what is not, therefore affecting the overall outcome of the program.

	Like many other procedural languages, C++ provides different forms of statements for different purposes. Declaration statements are used for defining variables. Assignment-like statements are used for simple, algebraic computations. Branching statements are used for specifying alternate paths of execution, depending on the outcome of a logical condition. Loop statements are used for specifying computations which need to be repeated until a certain logical condition is satisfied. Flow control statements are used to divert the execution path to another part of the program. We will discuss these in turn.

Simple and Compound Statements

A simple statement is a computation terminated by a semicolon. Variable definitions and semicolon-terminated expressions are examples:

int	i;				// declaration statement

++i;				// this has a side-effect

double d = 10.5;		// declaration statement

d + 5;				// useless statement!

The last example represents a useless statement, because it has no side-effect (d is added to 5 and the result is just discarded).

	The simplest statement is the null statement which consists of just a semicolon:

;		// null statement

Although the null statement has no side-effect, as we will see later in the chapter, it has some genuine uses.

	Multiple statements can be combined into a compound statement by enclosing them within braces. For example:

{ int min, i = 10, j = 20;

 min = (i < j ? i : j);

 cout << min << '\n';

}

Compound statements are useful in two ways: (i) they allow us to put multiple statements in places where otherwise only single statements are allowed, and (ii) they allow us to introduce a new scope in the program. A scope is a part of the program text within which a variable remains defined. For example, the scope of min, i, and j in the above example is from where they are defined till the closing brace of the compound statement. Outside the compound statement, these variables are not defined.

	Because a compound statement may contain variable definitions and defines a scope for them, it is also called a block. The scope of a C++ variable is limited to the block immediately enclosing it. Blocks and scope rules will be described in more detail when we discuss functions in the next chapter.

		(

The if Statement

It is sometimes desirable to make the execution of a statement dependent upon a condition being satisfied. The if statement provides a way of expressing this, the general form of which is:

	if (expression)

		statement;

First expression is evaluated. If the outcome is nonzero then statement is executed. Otherwise, nothing happens.

	For example, when dividing two values, we may want to check that the denominator is nonzero:

if (count != 0)

	average = sum / count;

	To make multiple statements dependent on the same condition, we can use a compound statement:

if (balance > 0) {

	interest = balance * creditRate;

	balance += interest;

}

	A variant form of the if statement allows us to specify two alternative statements: one which is executed if a condition is satisfied and one which is executed if the condition is not satisfied. This is called the if-else statement and has the general form:

	if (expression)

		statement1;

	else

		statement2;

First expression is evaluated. If the outcome is nonzero then statement1 is executed. Otherwise, statement2 is executed.

	For example:

if (balance > 0) {

	interest = balance * creditRate;

	balance += interest;

} else {

	interest = balance * debitRate;

	balance += interest;

}

Given the similarity between the two alternative parts, the whole statement can be simplified to:

if (balance > 0)

	interest = balance * creditRate;

else

	interest = balance * debitRate;

balance += interest;

Or simplified even further using a conditional expression:

interest = balance * (balance > 0 ? creditRate : debitRate);

balance += interest;

Or just:

balance += balance * (balance > 0 ? creditRate : debitRate);

	If statements may be nested by having an if statement appear inside another if statement. For example:

if (callHour > 6) {

	if (callDuration <= 5)

		charge = callDuration * tarrif1;

	else

		charge = 5 * tarrif1 + (callDuration - 5) * tarrif2;

} else

	charge = flatFee;

	A frequently-used form of nested if statements involves the else part consisting of another if-else statement. For example:

if (ch >= '0' && ch <= '9')

	kind = digit;

else {

	if (ch >= 'A' && ch <= 'Z')

		kind = upperLetter;

	else {

		if (ch >= 'a' && ch <= 'z')

			kind = lowerLetter;

		else

			kind = special;

	}

}

For improved readability, it is conventional to format such cases as follows:

if (ch >= '0' && ch <= '9')

	kind = digit;

else if (cha >= 'A' && ch <= 'Z')

	kind = capitalLetter;

else if (ch >= 'a' && ch <= 'z')

	kind = smallLetter;

else

	kind = special;

		(

The switch Statement

The switch statement provides a way of choosing between a set of alternatives, based on the value of an expression. The general form of the switch statement is:

	switch (expression) {

		case constant1:

			statements;

		...

		case constantn:

			statements;

		default:

			statements;

	}

First expression (called the switch tag) is evaluated, and the outcome is compared to each of the numeric constants (called case labels), in the order they appear, until a match is found. The statements following the matching case are then executed. Note the plural: each case may be followed by zero or more statements (not just one statement). Execution continues until either a break statement is encountered or all intervening statements until the end of the switch statement are executed. The final default case is optional and is exercised if none of the earlier cases provide a match.

	For example, suppose we have parsed a binary arithmetic operation into its three components and stored these in variables operator, operand1, and operand2. The following switch statement performs the operation and stored the result in result.

switch (operator) {

	case '+':	result = operand1 + operand2;

				break;

	case '-':	result = operand1 - operand2;

				break;

	case '*':	result = operand1 * operand2;

				break;

	case '/':	result = operand1 / operand2;

				break;

	default:	cout << "unknown operator: " << ch << '\n';

				break;

}

	As illustrated by this example, it is usually necessary to include a break statement at the end of each case. The break terminates the switch statement by jumping to the very end of it. There are, however, situations in which it makes sense to have a case without a break. For example, if we extend the above statement to also allow x to be used as a multiplication operator, we will have:

switch (operator) {

	case '+':	result = operand1 + operand2;

				break;

	case '-':	result = operand1 - operand2;

				break;

	case 'x':

	case '*':	result = operand1 * operand2;

				break;

	case '/':	result = operand1 / operand2;

				break;

	default:	cout << "unknown operator: " << ch << '\n';

				break;

}

Because case 'x' has no break statement (in fact no statement at all!), when this case is satisfied, execution proceeds to the statements of the next case and the multiplication is performed.

	It should be obvious that any switch statement can also be written as multiple if-else statements. The above statement, for example, may be written as:

if (operator == '+')

	result = operand1 + operand2;

else if (operator == '-')

	result = operand1 - operand2;

else if (operator == 'x' || operator == '*')

	result = operand1 * operand2;

else if (operator == '/')

	result = operand1 / operand2;

else

	cout << "unknown operator: " << ch << '\n';

However, the switch version is arguably neater in this case. In general, preference should be given to the switch version when possible. The if-else approach should be reserved for situation where a switch cannot do the job (e.g., when the conditions involved are not simple equality expressions, or when the case labels are not numeric constants).

		(

The while Statement

The while statement (also called while loop) provides a way of repeating an statement while a condition holds. It is one of the three flavors of iteration in C++. The general form of the while statement is:

	while (expression)

		statement;

First expression (called the loop condition) is evaluated. If the outcome is nonzero then statement (called the loop body) is executed and the whole process is repeated. Otherwise, the loop is terminated.

	For example, suppose we wish to calculate the sum of all numbers from 1 to some integer denoted by n. This can be expressed as:

i = 1;

sum = 0;

while (i <= n)

	sum += i++;

	For n set to 5, Table 3.�seq table LoopTrace�1� provides a trace of the loop by listing the values of the variables involved and the loop condition.

Table 3.�seq table�1�	While loop trace.

Iteration �
i�
n�
i <= n�
sum += i++�
�
First�
1�
5�
1�
1�
�
Second�
2�
5�
1�
3�
�
Third�
3�
5�
1�
6�
�
Fourth�
4�
5�
1�
10�
�
Fifth�
5�
5�
1�
15�
�
Sixth�
6�
5�
0�
�
�

	It is not unusual for a while loop to have an empty body (i.e., a null statement). The following loop, for example, sets n to its greatest odd factor.

while (n % 2 == 0 && n /= 2)

	;

Here the loop condition provides all the necessary computation, so there is no real need for a body. The loop condition not only tests that n is even, it also divides n by two and ensures that the loop will terminate should n be zero.

		(

The do Statement

The do statement (also called do loop) is similar to the while statement, except that its body is executed first and then the loop condition is examined. The general form of the do statement is:

	do

		statement;

	while (expression);

First statement is executed and then expression is evaluated. If the outcome of the latter is nonzero then the whole process is repeated. Otherwise, the loop is terminated.

	The do loop is less frequently used than the while loop. It is useful for situations where we need the loop body to be executed at least once, regardless of the loop condition. For example, suppose we wish to repeatedly read a value and print its square, and stop when the value is zero. This can be expressed as the following loop:

do {

	cin >> n;

	cout << n * n << '\n';

} while (n != 0);

	Unlike the while loop, the do loop is never used in situations where it would have a null body. Although a do loop with a null body would be equivalent to a similar while loop, the latter is always preferred for its superior readability.

		(

The for Statement

The for statement (also called for loop) is similar to the while statement, but has two additional components: an expression which is evaluated only once before everything else, and an expression which is evaluated once at the end of each iteration. The general form of the for statement is:

	for (expression1; expression2; expression3)

		statement;

	

	First expression1 is evaluated. Each time round the loop, expression2 is evaluated. If the outcome is nonzero then statement is executed and expression3 is evaluated. Otherwise, the loop is terminated. The general for loop is equivalent to the following while loop:

	expression1;

	while (expression2) {

		statement;

		expression3;

	}

	The most common use of for loops is for situations where a variable is incremented or decremented with every iteration of the loop. The following for loop, for example, calculates the sum of all integers from 1 to n.

sum = 0;

for (i = 1; i <= n; ++i)

	sum += i;

This is preferred to the while-loop version we saw earlier. In this example, i is usually called the loop variable.

	C++ allows the first expression in a for loop to be a variable definition. In the above loop, for example, i can be defined inside the loop itself:

for (int i = 1; i <= n; ++i)

	sum += i;

Contrary to what may appear, the scope for i is not the body of the loop, but the loop itself. Scope-wise, the above is equivalent to:

int i;

for (i = 1; i <= n; ++i)

	sum += i;

	Any of the three expressions in a for loop may be empty. For example, removing the first and the third expression gives us something identical to a while loop:

for (; i != 0;)		// is equivalent to: while (i != 0)

	something;		//						 something;

	Removing all the expressions gives us an infinite loop. This loop's condition is assumed to be always true:

for (;;)				// infinite loop

	something;

	For loops with multiple loop variables are not unusual. In such cases, the comma operator is used to separate their expressions:

for (i = 0, j = 0; i + j < n; ++i, ++j)

	something;

	Because loops are statements, they can appear inside other loops. In other words, loops can be nested. For example,

for (int i = 1; i <= 3; ++i)

	for (int j = 1; j <= 3; ++j)

		cout << '(' << i << ',' << j << ")\n";

produces the product of the set {1,2,3} with itself, giving the output:

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

	 	(

The continue Statement

The continue statement terminates the current iteration of a loop and instead jumps to the next iteration. It applies to the loop immediately enclosing the continue statement. It is an error to use the continue statement outside a loop.

	In while and do loops, the next iteration commences from the loop condition. In a for loop, the next iteration commences from the loop’s third expression. For example, a loop which repeatedly reads in a number, processes it but ignores negative numbers, and terminates when the number is zero, may be expressed as:

do {

	cin >> num;	

	if (num < 0) continue;

	// process num here...

} while (num != 0);

This is equivalent to:

do {

	cin >> num;	

	if (num >= 0) {

		// process num here...

	}

} while (num != 0);

	A variant of this loop which reads in a number exactly n times (rather than until the number is zero) may be expressed as:

for (i = 0; i < n; ++i) {

	cin >> num;

	if (num < 0) continue;			// causes a jump to: ++i

	// process num here...

}

	When the continue statement appears inside nested loops, it applies to the loop immediately enclosing it, and not to the outer loops. For example, in the following set of nested loops, the continue applies to the for loop, and not the while loop:

while (more) {

	for (i = 0; i < n; ++i) {

		cin >> num;

		if (num < 0) continue;			// causes a jump to: ++i

		// process num here...

	}

	//etc...

}

		(

The break Statement

A break statement may appear inside a loop (while, do, or for) or a switch statement. It causes a jump out of these constructs, and hence terminates them. Like the continue statement, a break statement only applies to the loop or switch immediately enclosing it. It is an error to use the break statement outside a loop or a switch.

	For example, suppose we wish to read in a user password, but would like to allow the user a limited number of attempts:

for (i = 0; i < attempts; ++i) {

	cout << "Please enter your password: ";

	cin >> password;

	if (Verify(password))	// check password for correctness

		break;				// drop out of the loop

	cout << "Incorrect!\n";

}

Here we have assumed that there is a function called Verify which checks a password and returns true if it is correct, and false otherwise.

	Rewriting the loop without a break statement is always possible by using an additional logical variable (verified) and adding it to the loop condition:

verified = 0;

for (i = 0; i < attempts && !verified; ++i) {

	cout << "Please enter your password: ";

	cin >> password;

	verified = Verify(password));

	if (!verified)

		cout << "Incorrect!\n";

}

The break version is arguably simpler and therefore preferred.

		(

The goto Statement

The goto statement provides the lowest-level of jumping. It has the general form:

	goto label;

where label is an identifier which marks the jump destination of goto. The label should be followed by a colon and appear before a statement within the same function as the goto statement itself.

	For example, the role of the break statement in the for loop in the previous section can be emulated by a goto:

for (i = 0; i < attempts; ++i) {

	cout << "Please enter your password: ";

	cin >> password;

	if (Verify(password))	// check password for correctness

		goto out;			// drop out of the loop

	cout << "Incorrect!\n";

}

out:

//etc...

	Because goto provides a free and unstructured form of jumping (unlike break and continue), it can be easily misused. Most programmers these days avoid using it altogether in favor of clear programming. Nevertheless, goto does have some legitimate (though rare) uses. Because of the potential complexity of such cases, furnishing of examples is postponed to the later parts of the book.

		(

The return Statement

The return statement enables a function to return a value to its caller. It has the general form:

	return expression;

where expression denotes the value returned by the function. The type of this value should match the return type of the function. For a function whose return type is void, expression should be empty:

	return;

	The only function we have discussed so far is main, whose return type is always int. The return value of main is what the program returns to the operating system when it completes its execution. Under UNIX, for example, it its conventional to return 0 from main when the program executes without errors. Otherwise, a non-zero error code is returned. For example:

int main (void)

{

	cout << "Hello World\n";

	return 0;

}

	When a function has a non-void return value (as in the above example), failing to return a value will result in a compiler warning. The actual return value will be undefined in this case (i.e., it will be whatever value which happens to be in its corresponding memory location at the time).

		(

Exercises

3.�seq exercise�1�	Write a program which inputs a person’s height (in centimeters) and weight (in kilograms) and outputs one of the messages: underweight, normal, or overweight, using the criteria:

	Underweight:	weight < height/2.5

	Normal:	height/2.5 <= weight <= height/2.3

	Overweight:	height/2.3 < weight

3.�seq exercise�2�	Assuming that n is 20, what will the following code fragment output when executed?

if (n >= 0)

	if (n < 10)

		cout << "n is small\n";

else

	cout << "n is negative\n";

3.�seq exercise�3�	Write a program which inputs a date in the format dd/mm/yy and outputs it in the format month dd, year. For example, 25/12/61 becomes:

December 25, 1961

3.�seq exercise�4�	Write a program which inputs an integer value, checks that it is positive, and outputs its factorial, using the formulas:

	factorial(0) = 1

	factorial(n) = n × factorial(n-1)

3.�seq exercise�5�	Write a program which inputs an octal number and outputs its decimal equivalent. The following example illustrates the expected behavior of the program:

Input an octal number: 214

Octal(214) = Decimal(532)

3.�seq exercise�6�	Write a program which produces a simple multiplication table of the following format for integers in the range 1 to 9:

1 x 1 = 1

1 x 2 = 2

...

9 x 9 = 81

			(

�PAGE�44�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 3: Statements	�PAGE�35�

