

4.	Functions

This chapter describes user-defined functions as one of the main building blocks of C++ programs. The other main building block — user-defined classes — will be discussed in Chapter 6.

	A function provides a convenient way of packaging a computational recipe, so that it can be used as often as required. A function definition consists of two parts: interface and body. The interface of a function (also called its prototype) specifies how it may be used. It consists of three entities:

�SYMBOL 183 \f "Symbol" \s 10 \h�	The function name. This is simply a unique identifier.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The function parameters (also called its signature). This is a set of zero or more typed identifiers used for passing values to and from the function.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The function return type. This specifies the type of value the function returns. A function which returns nothing should have the return type void.

	The body of a function contains the computational steps (statements) that comprise the function.

	Using a function involves ‘calling’ it. A function call consists of the function name followed by the call operator brackets ‘()’, inside which zero or more comma-separated arguments appear. The number of arguments should match the number of function parameters. Each argument is an expression whose type should match the type of the corresponding parameter in the function interface.

	When a function call is executed, the arguments are first evaluated and their resulting values are assigned to the corresponding parameters. The function body is then executed. Finally, the function return value (if any) is passed to the caller.

	Since a call to a function whose return type is non-void yields a return value, the call is an expression and may be used in other expressions. By contrast, a call to a function whose return type is void is a statement.

A Simple Function

Listing 4.�seq listing SimpleFunction�1� shows the definition of a simple function which raises an integer to the power of another, positive integer.

Listing 4.�seq listing�1�

1

 2

3

4

5

6

7 �
int Power (int base, unsigned int exponent)

{

	int	result = 1;

	for (int i = 0; i < exponent; ++i)

		result *= base;

	return result;

}�
�
Annotation

1	This line defines the function interface. It starts with the return type of the function (int in this case). The function name appears next followed by its parameter list. Power has two parameters (base and exponent) which are of types int and unsigned int, respectively Note that the syntax for parameters is similar to the syntax for defining variables: type identifier followed by the parameter name. However, it is not possible to follow a type identifier with multiple comma-separated parameters:

	int Power (int base, exponent)	// Wrong!

2	This brace marks the beginning of the function body.

3	This line is a local variable definition.

4-5	This for-loop raises base to the power of exponent and stores the outcome in result.

6	This line returns result as the return value of the function.

7	This brace marks the end of the function body.

	Listing 4.�seq listing SimpleFunCall�2� illustrates how this function is called. The effect of this call is that first the argument values 2 and 8 are, respectively, assigned to the parameters base and exponent, and then the function body is evaluated.

Listing 4.�seq listing�2�

1

2

3

4

5 �
#include <iostream.h>

main (void)

{

	cout << "2 ^ 8 = " << Power(2,8) << '\n';

}�
�

When run, this program will produce the following output:

2 ^ 8 = 256

	In general, a function should be declared before its is used. A function declaration simply consists of the function prototype, which specifies the function name, parameter types, and return type. Line 2 in Listing 4.�seq listing PowerDeclaration�3� shows how Power may be declared for the above program. Although a function may be declared without its parameter names,

int Power (int, unsigned int);

this is not recommended unless the role of the parameters is obvious..

Listing 4.�seq listing�3�

1

2

3

4

5

6

7

8

9

10

11

12

13 �
#include <iostream.h>

int Power (int base, unsigned int exponent);	// function declaration

main (void)

{

	cout << "2 ^ 8 = " << Power(2,8) << '\n';

}

int Power (int base, unsigned int exponent)

{

	int	result = 1;

	for (int i = 0; i < exponent; ++i)

		result *= base;

	return result;

}�
�

	Because a function definition contains a prototype, it also serves as a declaration. Therefore if the definition of a function appears before its use, no additional declaration is needed. Use of function prototypes is nevertheless encouraged for all circumstances. Collecting these in a separate header file enables other programmers to quickly access the functions without having to read their entire definitions.

		(

Parameters and Arguments

C++ supports two styles of parameters: value and reference. A value parameter receives a copy of the value of the argument passed to it. As a result, if the function makes any changes to the parameter, this will not affect the argument. For example, in

#include <iostream.h>

void Foo (int num)

{

	num = 0;

	cout << "num = " << num << '\n';

}

int main (void)

{

	int x = 10;

	Foo(x);

	cout << "x = " << x << '\n';

	return 0;

}

the single parameter of Foo is a value parameter. As far as this function is concerned, num behaves just like a local variable inside the function. When the function is called and x passed to it, num receives a copy of the value of x. As a result, although num is set to 0 by the function, this does not affect x. The program produces the following output:

num = 0;

x = 10;

	A reference parameter, on the other hand, receives the argument passed to it and works on it directly. Any changes made by the function to a reference parameter is in effect directly applied to the argument. Reference parameters will be further discussed in Chapter 5.

	Within the context of function calls, the two styles of passing arguments are, respectively, called pass-by-value and pass-by-reference. It is perfectly valid for a function to use pass-by-value for some of its parameters and pass-by-reference for others. The former is used much more often in practice.

		(

Global and Local Scope

Everything defined at the program scope level (i.e., outside functions and classes) is said to have a global scope. Thus the sample functions we have seen so far all have a global scope. Variables may also be defined at the global scope:

int year = 1994;			// global variable

int Max (int, int);		// global function

int main (void)			// global function

{

	//...

}

	Uninitialized global variables are automatically initialized to zero.

	Since global entities are visible at the program level, they must also be unique at the program level. This means that the same global variable or function may not be defined more than once at the global level. (However, as we will see later, a function name may be reused so long as its signature remains unique.) Global entities are generally accessible everywhere in the program.

	Each block in a program defines a local scope. Thus the body of a function represents a local scope. The parameters of a function have the same scope as the function body. Variables defined within a local scope are visible to that scope only. Hence, a variable need only be unique within its own scope. Local scopes may be nested, in which case the inner scopes override the outer scopes. For example, in

int xyz;					// xyz is global

void Foo (int xyz)		// xyz is local to the body of Foo

{

	if (xyz > 0) {		

		double xyz;		// xyz is local to this block

		//...

	}

}

there are three distinct scopes, each containing a distinct xyz.

	Generally, the lifetime of a variable is limited to its scope. So, for example, global variables last for the duration of program execution, while local variables are created when their scope is entered and destroyed when their scope is exited. The memory space for global variables is reserved prior to program execution commencing, whereas the memory space for local variables is allocated on the fly during program execution.

		(

Scope Operator

Because a local scope overrides the global scope, having a local variable with the same name as a global variable makes the latter inaccessible to the local scope. For example, in

int error;

void Error (int error)

{

	//...

}

the global error is inaccessible inside Error, because it is overridden by the local error parameter.

	This problem is overcome using the unary scope operator :: which takes a global entity as argument:

int error;

void Error (int error)

{

	//...

	if (::error != 0)			// refers to global error

		//...

}

		(

Auto Variables

Because the lifetime of a local variable is limited and is determined automatically, these variables are also called automatic. The storage class specifier auto may be used to explicitly specify a local variable to be automatic. For example:

void Foo (void)

{

	auto int xyz;		// same as: int xyz;

	//...

}

This is rarely used because all local variables are by default automatic.

		(

Register Variables

As mentioned earlier, variables generally denote memory locations where variable values are stored. When the program code refers to a variable (e.g., in an expression), the compiler generates machine code which accesses the memory location denoted by the variable. For frequently-used variables (e.g., loop variables), efficiency gains can be obtained by keeping the variable in a register instead thereby avoiding memory access for that variable.

	The storage class specifier register may be used to indicate to the compiler that the variable should be stored in a register if possible. For example:

for (register int i = 0; i < n; ++i)

	sum += i;

Here, each time round the loop, i is used three times: once when it is compared to n, once when it is added to sum, and once when it is incremented. Therefore it makes sense to keep i in a register for the duration of the loop.

	Note that register is only a hint to the compiler, and in some cases the compiler may choose not to use a register when it is asked to do so. One reason for this is that any machine has a limited number of registers and it may be the case that they are all in use.

	Even when the programmer does not use register declarations, many optimizing compilers try to make an intelligent guess and use registers where they are likely to improve the performance of the program.

	Use of register declarations can be left as an after thought; they can always be added later by reviewing the code and inserting it in appropriate places.

		(

Static Variables and Functions

It is often useful to confine the accessibility of a global variable or function to a single file. This is facilitated by the storage class specifier static. For example, consider a puzzle game program which consists of three files for game generation, game solution, and user interface. The game solution file would contain a Solve function and a number of other functions ancillary to Solve. Because the latter are only for the private use of Solve, it is best not to make them accessible outside the file:

static int FindNextRoute (void)	// only accessible in this file

{

	//...

}

//...

int Solve (void)					// accessible outside this file

{

	//...

}

	The same argument may be applied to the global variables in this file that are for the private use of the functions in the file. For example, a global variable which records the length of the shortest route so far is best defined as static:

static int shortestRoute;		// static global variable

	A local variable in a function may also be defined as static. The variable will remain only accessible within its local scope; however, its lifetime will no longer be confined to this scope, but will instead be global. In other words, a static local variable is a global variable which is only accessible within its local scope.

	Static local variables are useful when we want the value of a local variable to persist across the calls to the function in which it appears. For example, consider an Error function which keeps a count of the errors and aborts the program when the count exceeds a preset limit:

void Error (char *message)

{

	static int count = 0;		// static local variable

	if (++count > limit)

		Abort();

	//...

}

Like global variables, static local variables are automatically initialized to 0.

	(

Extern Variables and Functions

Because a global variable may be defined in one file and referred to in other files, some means of telling the compiler that the variable is defined elsewhere may be needed. Otherwise, the compiler may object to the variable as undefined. This is facilitated by an extern declaration. For example, the declaration

extern int size;						// variable declaration

informs the compiler that size is actually defined somewhere (may be later in this file or in another file). This is called a variable declaration (not definition) because it does not lead to any storage being allocated for size.

	It is a poor programming practice to include an initializer for an extern variable, since this causes it to become a variable definition and have storage allocated for it:

extern int size = 10;				// no longer a declaration!

If there is another definition for size elsewhere in the program, it will eventually clash with this one.

	Function prototypes may also be declared as extern, but this has no effect when a prototype appears at the global scope. It is more useful for declaring function prototypes inside a function. For example:

double Tangent (double angle)

{

	extern	double sin(double);		// defined elsewhere

	extern	double cos(double);		// defined elsewhere

	return sin(angle) / cos(angle);

}

	The best place for extern declarations is usually in header files so that they can be easily included and shared by source files.

		(

Symbolic Constants

Preceding a variable definition by the keyword const makes that variable read-only (i.e., a symbolic constant). A constant must be initialized to some value when it is defined. For example:

const int	 maxSize = 128;

const double pi = 3.141592654;

Once defined, the value of a constant cannot be changed:

maxSize = 256;					// illegal!

A constant with no type specifier is assumed to be of type int:

const maxSize = 128;				// maxSize is of type int

	With pointers, two aspects need to be considered: the pointer itself, and the object pointed to, either of which or both can be constant:

const char *str1 = "pointer to constant";

char *const str2 = "constant pointer";

const char *const str3 = "constant pointer to constant";

str1[0] = 'P';					// illegal!

str1 = "ptr to const";			// ok

str2 = "const ptr";				// illegal!

str2[0] = 'P';					// ok

str3 = "const to const ptr";		// illegal!

str3[0] = 'C';					// illegal!

	A function parameter may also be declared to be constant. This may be used to indicate that the function does not change the value of a parameter:

int Power (const int base, const unsigned int exponent)

{

	//...

}

A function may also return a constant result:

const char* SystemVersion (void)

{

	return "5.2.1";

}

	The usual place for constant definition is within header files so that they can be shared by source files.

		(

Enumerations

An enumeration of symbolic constants is introduced by an enum declaration. This is useful for declaring a set of closely-related constants. For example,

enum {north, south, east, west};

introduces four enumerators which have integral values starting from 0 (i.e., north is 0, south is 1, etc.) Unlike symbolic constants, however, which are read-only variables, enumerators have no allocated memory.

	The default numbering of enumerators can be overruled by explicit initialization:

enum {north = 10, south, east = 0, west};

Here, south is 11 and west is 1.

	An enumeration can also be named, where the name becomes a user-defined type. This is useful for defining variables which can only be assigned a limited set of values. For example, in

enum Direction {north, south, east, west};

Direction d;	

d can only be assigned one of the enumerators for Direction.

	Enumerations are particularly useful for naming the cases of a switch statement.

switch (d) {

	case north:	//...

	case south:	//...

	case east:	//...

	case west:	//...

}

	We will extensively use the following enumeration for representing boolean values in the programs in this book:

enum Bool {false, true};

		(

Runtime Stack

Like many other modern programming languages, C++ function call execution is based on a runtime stack. When a function is called, memory space is allocated on this stack for the function parameters, return value, and local variables, as well as a local stack area for expression evaluation. The allocated space is called a stack frame. When a function returns, the allocated stack frame is released so that it can be reused.

	For example, consider a situation where main calls a function called Solve which in turn calls another function called Normalize:

int Normalize (void)

{

	//...

}

int Solve (void)

{

	//...

	Normalize();

	//...

}

int main (void)

{

	//...

	Solve();

	//...

}

	Figure 4.�seq figure StackFrames�1� illustrates the stack frame when Normalize is being executed.

Figure 4.�seq figure�1�	Function call stack frames.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	It is important to note that the calling of a function involves the overheads of creating a stack frame for it and removing the stack frame when it returns. For most functions, this overhead is negligible compared to the actual computation the function performs.

		(

Inline Functions

Suppose that a program frequently requires to find the absolute value of an integer quantity. For a value denoted by n, this may be expressed as:

(n > 0 ? n : -n)

However, instead of replicating this expression in many places in the program, it is better to define it as a function:

int Abs (int n)

{

	return n > 0 ? n : -n;

}

	The function version has a number of advantages. First, it leads to a more readable program. Second, it is reusable. And third, it avoid undesirable side-effects when the argument is itself an expression with side-effects.

	The disadvantage of the function version, however, is that its frequent use can lead to a considerable performance penalty due to the overheads associated with calling a function. For example, if Abs is used within a loop which is iterated thousands of times, then it will have an impact on performance. The overhead can be avoided by defining Abs as an inline function:

inline int Abs (int n)

{

	return n > 0 ? n : -n;

}

	The effect of this is that when Abs is called, the compiler, instead of generating code to call Abs, expands and substitutes the body of Abs in place of the call. While essentially the same computation is performed, no function call is involved and hence no stack frame is allocated.

	Because calls to an inline function are expanded, no trace of the function itself will be left in the compiled code. Therefore, if a function is defined inline in one file, it may not be available to other files. Consequently, inline functions are commonly placed in header files so that they can be shared.

	Like the register keyword, inline is a hint which the compiler is not obliged to observe. Generally, the use of inline should be restricted to simple, frequently used functions. A function which contains anything more than a couple of statements is unlikely to be a good candidate. Use of inline for excessively long and complex functions is almost certainly ignored by the compiler.	(

Recursion

A function which calls itself is said to be recursive. Recursion is a general programming technique applicable to problems which can be defined in terms of themselves. Take the factorial problem, for instance, which is defined as:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Factorial of 0 is 1.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Factorial of a positive number n is n times the factorial of n-1.

The second line clearly indicates that factorial is defined in terms of itself and hence can be expressed as a recursive function:

int Factorial (unsigned int n)

{

	return n == 0 ? 1 : n * Factorial(n-1);

}

	For n set to 3, Table 4.�seq table FactorialTrace�1� provides a trace of the calls to Factorial. The stack frames for these calls appear sequentially on the runtime stack, one after the other.

Table 4.�seq table�1�	Factorial(3) execution trace.

Call �
n�
n == 0�
n * Factorial(n-1)�
Returns�
�
First�
3�
0�
3 * Factorial(2)�
6�
�
Second�
2�
0�
2 * Factorial(1)�
2�
�
Third�
1�
0�
1 * Factorial(0)�
1�
�
Fourth�
0�
1�
�
1�
�

	A recursive function must have at least one termination condition which can be satisfied. Otherwise, the function will call itself indefinitely until the runtime stack overflows. The Factorial function, for example, has the termination condition n == 0 which, when satisfied, causes the recursive calls to fold back. (Note that for a negative n this condition will never be satisfied and Factorial will fail).

	As a general rule, all recursive functions can be rewritten using iteration. In situations where the number of stack frames involved may be quite large, the iterative version is preferred. In other cases, the elegance and simplicity of the recursive version may give it the edge.

	For factorial, for example, a very large argument will lead to as many stack frames. An iterative version is therefore preferred in this case:

int Factorial (unsigned int n)

{

	int result = 1;

	while (n > 0) result *= n--;

	return result;

}																(

Default Arguments

Default argument is a programming convenience which removes the burden of having to specify argument values for all of a function’s parameters. For example, consider a function for reporting errors:

void Error (char *message, int severity = 0);

Here, severity has a default argument of 0; both the following calls are therefore valid:

Error("Division by zero", 3);	// severity set to 3

Error("Round off error");		// severity set to 0

As the first call illustrates, a default argument may be overridden by explicitly specifying an argument.

	Default arguments are suitable for situations where certain (or all) function parameters frequently take the same values. In Error, for example, severity 0 errors are more common than others and therefore a good candidate for default argument. A less appropriate use of default arguments would be:

int Power (int base, unsigned int exponent = 1);

Because 1 (or any other value) is unlikely to be a frequently-used one in this situation.

	To avoid ambiguity, all default arguments must be trailing arguments. The following declaration is therefore illegal:

void Error (char *message = "Bomb", int severity);	// Illegal!

	A default argument need not necessarily be a constant. Arbitrary expressions can be used, so long as the variables used in the expression are available to the scope of the function definition (e.g., global variables).

	The accepted convention for default arguments is to specify them in function declarations, not function definitions. Because function declarations appear in header files, this enables the user of a function to have control over the default arguments. Thus different default arguments can be specified for different situations. It is, however, illegal to specify two different default arguments for the same function in a file.

		(

Variable Number of Arguments

It is sometimes desirable, if not necessary, to have functions which take a variable number of arguments. A simple example is a function which takes a set of menu options as arguments, displays the menu, and allows the user to choose one of the options. To be general, the function should be able to accept any number of options as arguments. This may be expressed as

int Menu (char *option1 ...);

which states that Menu should be given one argument or more.

	Menu can access its arguments using a set of macro definitions in the header file stdarg.h, as illustrated by Listing 4.�seq listing MenuFunction�4�. The relevant macros are highlighted in bold.

Listing 4.�seq listing�4�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 �
#include <iostream.h>

#include <stdarg.h>

int Menu (char *option1 ...)

{

	va_list args;				// argument list

	char* option = option1;

	int count = 0, choice = 0;

	

	va_start(args, option1);		// initialize args

	do {

		cout << ++count << ". " << option << '\n';

	} while ((option = va_arg(args, char*)) != 0);

	va_end(args);				// clean up args

	cout << "option? ";

	cin >> choice;

	return (choice > 0 && choice <= count) ? choice : 0;

}�
�

Annotation

5	To access the arguments, args is declared to be of type va_list.

8	Args is initialized by calling va_start. The second argument to va_start must be the last function parameter explicitly declared in the function header (i.e., option1 here).

11	Subsequent arguments are retrieved by calling va_arg. The second argument to va_arg must be the expected type of that argument (i.e., char* here). For this technique to work, the last argument must be a 0, marking the end of the argument list. Va_arg is called repeatedly until this 0 is reached.

12	Finally, va_end is called to restore the runtime stack (which may have been modified by the earlier calls).

The sample call

int n = Menu(

		"Open file",

		"Close file",

		"Revert to saved file",

		"Delete file",

		"Quit application",

		0);

will produce the following output:

1. Open file

2. Close file

3. Revert to saved file

4. Delete file

5. Quit application

option?

		(

Command Line Arguments

When a program is executed under an operating system (such as DOS or UNIX), it can be passed zero or more arguments. These arguments appear after the program executable name and are separated by blanks. Because they appear on the same line as where operating system commands are issued, they are called command line arguments.

	As an example, consider a program named sum which prints out the sum of a set of numbers provided to it as command line arguments. Dialog 4.�seq dialog CommandLine�1� illustrates how two numbers are passed as arguments to sum ($ is the UNIX prompt).

Dialog 4.�seq dialog�1�

1

 2

3 �
$ sum 10.4 12.5

22.9

$�
�

	Command line arguments are made available to a C++ program via the main function. There are two ways in which main can be defined:

int main (void);

int main (int argc, const char* argv[]);

The latter is used when the program is intended to accept command line arguments. The first parameter, argc, denotes the number of arguments passed to the program (including the name of the program itself). The second parameter, argv, is an array of the string constants which represent the arguments. For example, given the command line in Dialog 4.�seq dialog CommandLine�1�, we have:

	argc	is	3

	argv[0]	is	"sum"

	argv[1]	is	"10.4"

	argv[2]	is	"12.5"

Listing 4.�seq listing Sum�5� illustrates a simple implementation for sum. Strings are converted to real numbers using atof, which is defined in stdlib.h.

Listing 4.�seq listing�5�

1

 2

3

4

5

6

7

8

9

10 �
#include <iostream.h>

#include <stdlib.h>

int main (int argc, const char *argv[])

{

	double sum = 0;

	for (int i = 1; i < argc; ++i)

 	sum += atof(argv[i]);

	cout << sum << '\n';

	return 0;

}�
�
		(

Exercises

4.�seq exercise�1�	Write the programs in exercises 1.1 and 3.1 as functions.

4.�seq exercise�2�	Given the following definition of a Swap function

void Swap (int x, int y)

{

	int temp = x;

	x = y;

	y = temp;

}

what will be the value of x and y after the following call:

x = 10;

y = 20;

Swap(x, y);

4.�seq exercise�3�	What will the following program output when executed?

#include <iostream.h>

char *str = "global";

void Print (char *str)

{

	cout << str << '\n';

	{

		char *str = "local";

		cout << str << '\n';

		cout << ::str << '\n';

	}

	cout << str << '\n';

}

int main (void)

{

	Print("Parameter");

	return 0;

}

	

4.�seq exercise�4�	Write a function which outputs all the prime numbers between 2 and a given positive integer n:

void Primes (unsigned int n);

A number is prime if it is only divisible by itself and 1.

4.�seq exercise�5�	Define an enumeration called Month for the months of the year and use it to define a function which takes a month as argument and returns it as a constant string.

4.�seq exercise�6�	Define an inline function called IsAlpha which returns nonzero when its argument is a letter, and zero otherwise.

4.�seq exercise�7�	Define a recursive version of the Power function described in this chapter.

4.�seq exercise�8�	Write a function which returns the sum of a list of real values

double Sum (int n, double val ...);

where n denotes the number of values in the list.

		(

�PAGE�64�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 1: Preliminaries	�PAGE�45�

