

5.	Arrays, Pointers, and References

This chapter introduces the array, pointer, and reference data types and illustrates their use for defining variables.

	An array consists of a set of objects (called its elements), all of which are of the same type and are arranged contiguously in memory. In general, only the array itself has a symbolic name, not its elements. Each element is identified by an index which denotes the position of the element in the array. The number of elements in an array is called its dimension. The dimension of an array is fixed and predetermined; it cannot be changed during program execution.

	Arrays are suitable for representing composite data which consist of many similar, individual items. Examples include: a list of names, a table of world cities and their current temperatures, or the monthly transactions for a bank account.

	A pointer is simply the address of an object in memory. Generally, objects can be accessed in two ways: directly by their symbolic name, or indirectly through a pointer. The act of getting to an object via a pointer to it, is called dereferencing the pointer. Pointer variables are defined to point to objects of a specific type so that when the pointer is dereferenced, a typed object is obtained.

	Pointers are useful for creating dynamic objects during program execution. Unlike normal (global and local) objects which are allocated storage on the runtime stack, a dynamic object is allocated memory from a different storage area called the heap. Dynamic objects do not obey the normal scope rules. Their scope is explicitly controlled by the programmer.

	A reference provides an alternative symbolic name (alias) for an object. Accessing an object through a reference is exactly the same as accessing it through its original name. References offer the power of pointers and the convenience of direct access to objects. They are used to support the call-by-reference style of function parameters, especially when large objects are being passed to functions.

Arrays

An array variable is defined by specifying its dimension and the type of its elements. For example, an array representing 10 height measurements (each being an integer quantity) may be defined as:

int heights[10];

The individual elements of the array are accessed by indexing the array. The first array element always has the index 0. Therefore, heights[0] and heights[9] denote, respectively, the first and last element of heights. Each of heights elements can be treated as an integer variable. So, for example, to set the third element to 177, we may write:

heights[2] = 177;

	Attempting to access a nonexistent array element (e.g., heights[-1] or heights[10]) leads to a serious runtime error (called ‘index out of bounds’ error).

	Processing of an array usually involves a loop which goes through the array element by element. Listing 5.�seq listing Average1�1� illustrates this using a function which takes an array of integers and returns the average of its elements.

Listing 5.�seq listing�1�

1

2

3

4

5

6

7

8 �
const int size = 3;

double Average (int nums[size])

{

	double average = 0;

	for (register i = 0; i < size; ++i)

		average += nums[i];

	return average/size;

}�
�

	Like other variables, an array may have an initializer. Braces are used to specify a list of comma-separated initial values for array elements. For example,

int nums[3] = {5, 10, 15};

initializes the three elements of nums to 5, 10, and 15, respectively. When the number of values in the initializer is less than the number of elements, the remaining elements are initialized to zero:

int nums[3] = {5, 10};		// nums[2] initializes to 0

	When a complete initializer is used, the array dimension becomes redundant, because the number of elements is implicit in the initializer. The first definition of nums can therefore be equivalently written as:

int nums[] = {5, 10, 15};	// no dimension needed

	Another situation in which the dimension can be omitted is for an array function parameter. For example, the Average function above can be improved by rewriting it so that the dimension of nums is not fixed to a constant, but specified by an additional parameter. Listing 5.�seq listing Average2�2� illustrates this.

Listing 5.�seq listing�2�

1

 2

3

4

5

6

7 �
double Average (int nums[], int size)

{

	double average = 0;

	for (register i = 0; i < size; ++i)

		average += nums[i];

	return average/size;

}�
�

	A C++ string is simply an array of characters. For example,

char	str[] = "HELLO";

defines str to be an array of six characters: five letters and a null character. The terminating null character is inserted by the compiler. By contrast,

char	str[] = {'H', 'E', 'L', 'L', 'O'};

defines str to be an array of five characters.

	It is easy to calculate the dimension of an array using the sizeof operator. For example, given an array ar whose element type is Type, the dimension of ar is:

sizeof(ar) / sizeof(Type)

		(

Multidimensional Arrays

An array may have more than one dimension (i.e., two, three, or higher). The organization of the array in memory is still the same (a contiguous sequence of elements), but the programmer’s perceived organization of the elements is different. For example, suppose we wish to represent the average seasonal temperature for three major Australian capital cities (see Table 5.�seq table AveTemp�1�).

Table 5.�seq table�1�	Average seasonal temperature.

�
Spring�
Summer�
Autumn�
Winter�
�
Sydney�
26�
34�
22�
17�
�
Melbourne�
24�
32�
19�
13�
�
Brisbane�
28�
38�
25�
20�
�

This may be represented by a two-dimensional array of integers:

int	seasonTemp[3][4];

The organization of this array in memory is as 12 consecutive integer elements. The programmer, however, can imagine it as three rows of four integer entries each (see Figure 5.�seq figure TwoDimensional�1�).

Figure 5.�seq figure�1�	Organization of seasonTemp in memory.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	As before, elements are accessed by indexing the array. A separate index is needed for each dimension. For example, Sydney’s average summer temperature (first row, second column) is given by seasonTemp[0][1].

	The array may be initialized using a nested initializer:

int seasonTemp[3][4] = {

	{26, 34, 22, 17},

	{24, 32, 19, 13},

	{28, 38, 25, 20}

};

Because this is mapped to a one-dimensional array of 12 elements in memory, it is equivalent to:

int seasonTemp[3][4] = {

	26, 34, 22, 17, 24, 32, 19, 13, 28, 38, 25, 20

};

The nested initializer is preferred because as well as being more informative, it is more versatile. For example, it makes it possible to initialize only the first element of each row and have the rest default to zero:

int seasonTemp[3][4] = {{26}, {24}, {28}};

We can also omit the first dimension (but not subsequent dimensions) and let it be derived from the initializer:

int seasonTemp[][4] = {

	{26, 34, 22, 17},

	{24, 32, 19, 13},

	{28, 38, 25, 20}

};

	Processing a multidimensional array is similar to a one-dimensional array, but uses nested loops instead of a single loop. Listing 5.�seq listing HighestTemp�3� illustrates this by showing a function for finding the highest temperature in seasonTemp.

Listing 5.�seq listing�3�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 �
const int rows		= 3;

const int columns	= 4;

int seasonTemp[rows][columns] = {

	{26, 34, 22, 17},

	{24, 32, 19, 13},

	{28, 38, 25, 20}

};

int HighestTemp (int temp[rows][columns])

{

	int	highest = 0;

	for (register i = 0; i < rows; ++i)

 	for (register j = 0; j < columns; ++j)

			if (temp[i][j] > highest)

 		highest = temp[i][j];

	return highest;

}�
�

		(

Pointers

A pointer is simply the address of a memory location and provides an indirect way of accessing data in memory. A pointer variable is defined to ‘point to’ data of a specific type. For example:

int		*ptr1;		// pointer to an int

char	*ptr2;		// pointer to a char

	The value of a pointer variable is the address to which it points. For example, given the definitions

int		num;

we can write:

ptr1 = #

The symbol & is the address operator; it takes a variable as argument and returns the memory address of that variable. The effect of the above assignment is that the address of num is assigned to ptr1. Therefore, we say that ptr1 points to num. Figure 5.�seq figure IntPointer�2� illustrates this diagrammatically.

Figure 5.�seq figure�2�	A simple integer pointer.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	Given that ptr1 points to num, the expression

*ptr1

dereferences ptr1 to get to what it points to, and is therefore equivalent to num. The symbol * is the dereference operator; it takes a pointer as argument and returns the contents of the location to which it points.

	In general, the type of a pointer must match the type of the data it is set to point to. A pointer of type void*, however, will match any type. This is useful for defining pointers which may point to data of different types, or whose type is originally unknown.

	A pointer may be cast (type converted) to another type. For example,

ptr2 = (char*) ptr1;

converts ptr1 to char pointer before assigning it to ptr2.

	Regardless of its type, a pointer may be assigned the value 0 (called the null pointer). The null pointer is used for initializing pointers, and for marking the end of pointer-based data structures (e.g., linked lists).

		(

Dynamic Memory

In addition to the program stack (which is used for storing global variables and stack frames for function calls), another memory area, called the heap, is provided. The heap is used for dynamically allocating memory blocks during program execution. As a result, it is also called dynamic memory. Similarly, the program stack is also called static memory.

	Two operators are used for allocating and deallocating memory blocks on the heap. The new operator takes a type as argument and allocated a memory block for an object of that type. It returns a pointer to the allocated block. For example,

int *ptr = new int;

char *str = new char[10];

allocate, respectively, a block for storing a single integer and a block large enough for storing an array of 10 characters.

	Memory allocated from the heap does not obey the same scope rules as normal variables. For example, in

void Foo (void)

{

	char *str = new char[10];

	//...

}

when Foo returns, the local variable str is destroyed, but the memory block pointed to by str is not. The latter remains allocated until explicitly released by the programmer.

	The delete operator is used for releasing memory blocks allocated by new. It takes a pointer as argument and releases the memory block to which it points. For example:

delete ptr;			// delete an object

delete [] str;		// delete an array of objects

Note that when the block to be deleted is an array, an additional [] should be included to indicate this. The significance of this will be explained later when we discuss classes.

	Should delete be applied to a pointer which points to anything but a dynamically-allocated object (e.g., a variable on the stack), a serious runtime error may occur. It is harmless to apply delete to the 0 pointer.

	Dynamic objects are useful for creating data which last beyond the function call which creates them. Listing 5.�seq listing CopyOf�4� illustrates this using a function which takes a string parameter and returns a copy of the string.

Listing 5.�seq listing�4�

1

2

3

4

5

6

7 �
#include <string.h>

char* CopyOf (const char *str)

{

	char *copy = new char[strlen(str) + 1];

	strcpy(copy, str);

	return copy;

}�
�

Annotation

1	This is the standard string header file which declares a variety of functions for manipulating strings.

4	The strlen function (declared in string.h) counts the characters in its string argument up to (but excluding) the final null character. Because the null character is not included in the count, we add 1 to the total and allocate an array of characters of that size.

5	The strcpy function (declared in string.h) copies its second argument to its first, character by character, including the final null character.

	Because of the limited memory resources, there is always the possibility that dynamic memory may be exhausted during program execution, especially when many large blocks are allocated and none released. Should new be unable to allocate a block of the requested size, it will return 0 instead. It is the responsibility of the programmer to deal with such possibilities. The exception handling mechanism of C++ (explained in Chapter 10) provides a practical method of dealing with such problems.

		(

Pointer Arithmetic

In C++ one can add an integer quantity to or subtract an integer quantity from a pointer. This is frequently used by programmers and is called pointer arithmetic. Pointer arithmetic is not the same as integer arithmetic, because the outcome depends on the size of the object pointed to. For example, suppose that an int is represented by 4 bytes. Now, given

char *str = "HELLO";

int nums[] = {10, 20, 30, 40};

int *ptr = &nums[0];			// pointer to first element

str++ advances str by one char (i.e., one byte) so that it points to the second character of "HELLO", whereas ptr++ advances ptr by one int (i.e., four bytes) so that it points to the second element of nums. Figure 5.�seq figure PointerArith�3� illustrates this diagrammatically.

Figure 5.�seq figure�3�	Pointer arithmetic.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	It follows, therefore, that the elements of "HELLO" can be referred to as *str, *(str + 1), *(str + 2), etc. Similarly, the elements of nums can be referred to as *ptr, *(ptr + 1), *(ptr + 2), and *(ptr + 3).

	Another form of pointer arithmetic allowed in C++ involves subtracting two pointers of the same type. For example:

int *ptr1 = &nums[1];

int *ptr2 = &nums[3];

int n = ptr2 - ptr1;		// n becomes 2

	Pointer arithmetic is very handy when processing the elements of an array. Listing 5.�seq listing CopyString�5� shows as an example a string copying function similar to strcpy.

Listing 5.�seq listing�5�

1

 2

3

 4

5 �
void CopyString (char *dest, char *src)

{

	while (*dest++ = *src++)

		;

}�
�

�
Annotation

3	The condition of this loop assigns the contents of src to the contents of dest and then increments both pointers. This condition becomes 0 when the final null character of src is copied to dest.

	In turns out that an array variable (such as nums) is itself the address of the first element of the array it represents. Hence the elements of nums can also be referred to using pointer arithmetic on nums, that is, nums[i] is equivalent to *(nums + i). The difference between nums and ptr is that nums is a constant, so it cannot be made to point to anything else, whereas ptr is a variable and can be made to point to any other integer.

	Listing 5.�seq listing HighestTemp2�6� shows how the HighestTemp function (shown earlier in Listing 5.�seq listing HighestTemp�3�) can be improved using pointer arithmetic.

Listing 5.�seq listing�6�

1

 2

3

4

5

6

7

8

9 �
int HighestTemp (const int *temp, const int rows, const int columns)

{

	int	highest = 0;

	for (register i = 0; i < rows; ++i)

 	for (register j = 0; j < columns; ++j)

			if (*(temp + i * columns + j) > highest)

				highest = *(temp + i * columns + j);

	return highest;

}�
�

Annotation

1	Instead of passing an array to the function, we pass an int pointer and two additional parameters which specify the dimensions of the array. In this way, the function is not restricted to a specific array size.

6	The expression *(temp + i * columns + j) is equivalent to temp[i][j] in the previous version of this function.

	HighestTemp can be simplified even further by treating temp as a one-dimensional array of row * column integers. This is shown in Listing 5.�seq listing HighestTemp3�7�.

Listing 5.�seq listing�7�

1

 2

3

4

5

6

7

8 �
int HighestTemp (const int *temp, const int rows, const int columns)

{

	int	highest = 0;

	for (register i = 0; i < rows * columns; ++i)

		if (*(temp + i) > highest)

			highest = *(temp + i);

	return highest;

}�
�
		(

Function Pointers

It is possible to take the address of a function and store it in a function pointer. The pointer can then be used to indirectly call the function. For example,

int (*Compare)(const char*, const char*);

defines a function pointer named Compare which can hold the address of any function that takes two constant character pointers as arguments and returns an integer. The string comparison library function strcmp, for example, is such. Therefore:

Compare = &strcmp;			// Compare points to strcmp function

The & operator is not necessary and can be omitted:

Compare = strcmp;			// Compare points to strcmp function

Alternatively, the pointer can be defined and initialized at once:

int (*Compare)(const char*, const char*) = strcmp;

	When a function address is assigned to a function pointer, the two types must match. The above definition is valid because strcmp has a matching function prototype:

int strcmp(const char*, const char*);

	Given the above definition of Compare, strcmp can be either called directly, or indirectly via Compare. The following three calls are equivalent:

strcmp("Tom", "Tim");			// direct call

(*Compare)("Tom", "Tim");		// indirect call

Compare("Tom", "Tim");			// indirect call (abbreviated)

	A common use of a function pointer is to pass it as an argument to another function; typically because the latter requires different versions of the former in different circumstances. A good example is a binary search function for searching through a sorted array of strings. This function may use a comparison function (such as strcmp) for comparing the search string against the array strings. This might not be appropriate for all cases. For example, strcmp is case-sensitive. If we wanted to do the search in a non-case-sensitive manner then a different comparison function would be needed.

	As shown in Listing 5.�seq listing BinSearch�8�, by making the comparison function a parameter of the search function, we can make the latter independent of the former.

Listing 5.�seq listing�8�

1

 2

3

 4

5

6

7

8

9

10

11

12

13

14

15

16

17 �
int BinSearch (char *item, char *table[], int n,

			 int (*Compare)(const char*, const char*))

{

	int bot = 0;

	int top = n - 1;

	int mid, cmp;

	while (bot <= top) {

		mid = (bot + top) / 2;

		if ((cmp = Compare(item,table[mid])) == 0)

			return mid;				// return item index

		else if (cmp < 0)

			top = mid - 1;			// restrict search to lower half

		else

			bot = mid + 1;			// restrict search to upper half

	}

	return -1;						// not found

}�
�

Annotation

1	Binary search is a well-known algorithm for searching through a sorted list of items. The search list is denoted by table which is an array of strings of dimension n. The search item is denoted by item.

2	Compare is the function pointer to be used for comparing item against the array elements.

7	Each time round this loop, the search span is reduced by half. This is repeated until the two ends of the search span (denoted by bot and top) collide, or until a match is found.

9	The item is compared against the middle item of the array.

10	If item matches the middle item, the latter’s index is returned.

11	If item is less than the middle item, then the search is restricted to the lower half of the array.

14	If item is greater than the middle item, then the search is restricted to the upper half of the array.

16	Returns -1 to indicate that there was no matching item.

	The following example shows how BinSearch may be called with strcmp passed as the comparison function:

char *cities[] = {"Boston", "London", "Sydney", "Tokyo"};

cout << BinSearch("Sydney", cities, 4, strcmp) << '\n';

This will output 2 as expected.	(

References

A reference introduces an alias for an object. The notation for defining references is similar to that of pointers, except that & is used instead of *. For example,

double num1 = 3.14;

double &num2 = num1;		// num is a reference to num1

defines num2 as a reference to num1. After this definition num1 and num2 both refer to the same object, as if they were the same variable. It should be emphasized that a reference does not create a copy of an object, but merely a symbolic alias for it. Hence, after

num1 = 0.16;

both num1 and num2 will denote the value 0.16.

	A reference must always be initialized when it is defined: it should be an alias for something. It would be illegal to define a reference and initialize it later.

double &num3;		// illegal: reference without an initializer

num3 = num1;

	You can also initialize a reference to a constant. In this case a copy of the constant is made (after any necessary type conversion) and the reference is set to refer to the copy.

int &n = 1;			// n refers to a copy of 1

The reason that n becomes a reference to a copy of 1 rather than 1 itself is safety. Consider what could happen if this were not the case.

int &x = 1;

++x;

int y = x + 1;

The 1 in the first and the 1 in the third line are likely to be the same object (most compilers do constant optimization and allocate both 1’s in the same memory location). So although we expect y to be 3, it could turn out to be 4. However, by forcing x to be a copy of 1, the compiler guarantees that the object denoted by x will be different from both 1’s.

	The most common use of references is for function parameters. Reference parameters facilitates the pass-by-reference style of arguments, as opposed to the pass-by-value style which we have used so far. To observe the differences, consider the three swap functions in Listing 5.�seq listing Swap�9�.

Listing 5.�seq listing�9�

1

 2

3

 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 �
void Swap1 (int x, int y)		// pass-by-value (objects)

{

	int temp = x;

	x = y;

	y = temp;

}

void Swap2 (int *x, int *y)		// pass-by-value (pointers)

{

	int temp = *x;

	*x = *y;

	*y = temp;

}

void Swap3 (int &x, int &y)		// pass-by-reference

{

	int temp = x;

	x = y;

	y = temp;

}�
�
Annotation

1	Although Swap1 swaps x and y, this has no effect on the arguments passed to the function, because Swap1 receives a copy of the arguments. What happens to the copy does not affect the original.

7	Swap2 overcomes the problem of Swap1 by using pointer parameters instead. By dereferencing the pointers, Swap2 gets to the original values and swaps them.

13	Swap3 overcomes the problem of Swap1 by using reference parameters instead. The parameters become aliases for the arguments passed to the function and therefore swap them as intended.

	Swap3 has the added advantage that its call syntax is the same as Swap1 and involves no addressing or dereferencing. The following main function illustrates the differences:

int main (void)

{

	int i = 10, j = 20;

 Swap1(i, j);		cout << i << ", " << j << '\n';

	Swap2(&i, &j);	cout << i << ", " << j << '\n';

	Swap3(i, j);		cout << i << ", " << j << '\n';

}

When run, it will produce the following output:

10, 20

20, 10

10, 20															(

Typedefs

Typedef is a syntactic facility for introducing symbolic names for data types. Just as a reference defines an alias for an object, a typedef defines an alias for a type. Its main use is to simplify otherwise complicated type declarations as an aid to improved readability. Here are a few examples:

typedef char *String;

Typedef char Name[12];

typedef unsigned int uint;

The effect of these definitions is that String becomes an alias for char*, Name becomes an alias for an array of 12 chars, and uint becomes an alias for unsigned int. Therefore:

String	str;		// is the same as: char *str;

Name	name;		// is the same as: char name[12];

uint	n;			// is the same as: unsigned int n;

	The complicated declaration of Compare in Listing 5.�seq listing BinSearch�8� is a good candidate for typedef:

typedef int (*Compare)(const char*, const char*);

int BinSearch (char *item, char *table[], int n, Compare comp)

{

	//...

		if ((cmp = comp(item, table[mid])) == 0)

			return mid;

	//...

}

The typedef introduces Compare as a new type name for any function with the given prototype. This makes BinSearch’s signature arguably simpler.

		(

Exercises

5.�seq exercise�1�	Define two functions which, respectively, input values for the elements of an array of reals and output the array elements:

void ReadArray (double nums[], const int size);

void WriteArray (double nums[], const int size);

5.�seq exercise�2�	Define a function which reverses the order of the elements of an array of reals:

void Reverse (double nums[], const int size);

5.�seq exercise�3�	The following table specifies the major contents of four brands of breakfast cereals. Define a two-dimensional array to capture this data:

�
Fiber�
Sugar�
Fat�
Salt�
�
Top Flake�
12g�
25g�
16g�
0.4g�
�
Cornabix�
22g�
4g�
8g�
0.3g�
�
Oatabix�
28g�
5g�
9g�
0.5g�
�
Ultrabran�
32g�
7g�
2g�
0.2g�
�

Write a function which outputs this table element by element.

5.�seq exercise�4�	Define a function to input a list of names and store them as dynamically-allocated strings in an array, and a function to output them:

void ReadNames (char *names[], const int size);

void WriteNames (char *names[], const int size);

	Write another function which sorts the list using bubble sort:

void BubbleSort (char *names[], const int size);

	Bubble sort involves repeated scans of the list, where during each scan adjacent items are compared and swapped if out of order. A scan which involves no swapping indicates that the list is sorted.

5.�seq exercise�5�	Rewrite the following function using pointer arithmetic:

char* ReverseString (char *str)

{

	int len = strlen(str);

	char *result = new char[len + 1];

	for (register i = 0; i < len; ++i)

		result[i] = str[len - i - 1];

	result[len] = '\0';

	return result;

}

5.�seq exercise�6�	Rewrite BubbleSort (from 5.�seq exercise BubSort�4�) so that it uses a function pointer for comparison of names.

5.�seq exercise�7�	Rewrite the following using typedefs:

void (*Swap)(double, double);

char *table[];

char *&name;

usigned long *values[10][20];

			(

�PAGE�68�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 5: Arrays, Pointers, and References	�PAGE�65�

