

6.	Classes

This chapter introduces the class construct of C++ for defining new data types. A data type consists of two things:

�SYMBOL 183 \f "Symbol" \s 10 \h�	A concrete representation of the objects of the type.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A set of operations for manipulating the objects.

	Added to these is the restriction that, other than the designated operations, no other operation should be able to manipulate the objects. For this reason, we often say that the operations characterize the type, that is, they decide what can and what cannot happen to the objects. For the same reason, proper data types as such are often called abstract data types – abstract because the internal representation of the objects is hidden from operations that do not belong to the type.

	A class definition consists of two parts: header and body. The class header specifies the class name and its base classes. (The latter relates to derived classes and is discussed in Chapter 8.) The class body defines the class members. Two types of members are supported:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Data members have the syntax of variable definitions and specify the representation of class objects.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Member functions have the syntax of function prototypes and specify the class operations, also called the class interface.

	Class members fall under one of three different access permission categories:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Public members are accessible by all class users.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Private members are only accessible by the class members.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Protected members are only accessible by the class members and the members of a derived class.

	The data type defined by a class is used in exactly the same way as a built-in type.

A Simple Class

Listing 6.�seq listing PointClass�1� shows the definition of a simple class for representing points in two dimensions.

Listing 6.�seq listing�1�

1

 2

3

4

5

6 �
class Point {

	int	 xVal, yVal;

public:

	void SetPt (int, int);

	void OffsetPt (int, int);

};�
�

Annotation

1	This line contains the class header and names the class as Point. A class definition always begins with the keyword class, followed by the class name. An open brace marks the beginning of the class body.

2	This line defines two data members, xVal and yVal, both of type int. The default access permission for a class member is private. Both xVal and yVal are therefore private.

3	This keyword specifies that from this point onward the class members are public.

4-5	These two are public member functions. Both have two integer parameters and a void return type.

6	This brace marks the end of the class body.

	The order in which the data and member functions of a class are presented is largely irrelevant. The above class, for example, may be equivalently written as:

class Point {

public:

	void SetPt (int, int);

	void OffsetPt (int, int);

private:

	int	 xVal, yVal;

};

	The actual definition of the member functions is usually not part of the class and appears separately. Listing 6.�seq listing PointFunctions�2� shows the separate definition of SetPt and OffsetPt.

�
Listing 6.�seq listing�2�

1

 2

3

4

5

6

7

8

9

10 �
void Point::SetPt (int x, int y)

{

	xVal = x;

	yVal = y;

}

void Point::OffsetPt (int x, int y)

{

	xVal += x;

	yVal += y;

}�
�

Annotation

1	The definition of a class member function is very similar to a normal function. The function name should be preceded by the class name and a double-colon. This identifies SetPt as being a member of Point. The function interface must match its earlier interface definition within the class (i.e., take two integer parameters and have the return type void).

3-4	Note how SetPt (being a member of Point) is free to refer to xVal and yVal. Non-member functions do not have this privilege.

	Once a class is defined in this way, its name denotes a new data type, allowing us to define variables of that type. For example:

Point pt;			// pt is an object of class Point

pt.SetPt(10,20);		// pt is set to (10,20)

pt.OffsetPt(2,2);	// pt becomes (12,22)

	Member functions are called using the dot notation: pt.SetPt(10,20) calls SetPt for the object pt, that is, pt is an implicit argument to SetPt.

	By making xVal and yVal private members of the class, we have ensured that a user of the class cannot manipulate them directly:

pt.xVal = 10;		// illegal

This will not compile.

	At this stage, we should clearly distinguish between object and class. A class denotes a type, of which there is only one. An object is an element of a particular type (class), of which there may be many. For example,

Point pt1, pt2, pt3;

defines three objects (pt1, pt2, and pt3) all of the same class (Point). Furthermore, operations of a class are applied to objects of that class, but never the class itself. A class is therefore a concept that has no concrete existence other than that reflected by its objects.	(

Inline Member Functions

Just as global functions may be defined to be inline, so can the member functions of a class. In the class Point, for example, both member functions are very short (only two statements). Defining these to be inline improves the efficiency considerably. A member function is defined to be inline by inserting the keyword inline before its definition.

inline void Point::SetPt (int x,int y)

{

	xVal = x;

	yVal = y;

}

	An easier way of defining member functions to be inline is to include their definition inside the class.

class Point {

	int xVal, yVal;

public:

	void SetPt (int x,int y)		{ xVal = x; yVal = y; }

	void OffsetPt (int x,int y)	{ xVal += x; yVal += y; }

};

	Note that because the function body is included, no semicolon is needed after the prototype. Furthermore, all function parameters must be named.

		(

Example: A Set Class

A set is an unordered collection of objects with no repetitions. This example shows how a set may be defined as a class. For simplicity, we will restrict ourselves to sets of integers with a finite number of elements. Listing 6.�seq listing SetClass�3� shows the Set class definition.

Listing 6.�seq listing�3�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18�
#include <iostream.h>

const	maxCard = 100;

enum	Bool {false, true};

class Set {

public:

	void EmptySet		(void)		{ card = 0; }

	Bool Member		(const int);

	void	AddElem		(const int);

	void RmvElem		(const int);

	void Copy			(Set&);

	Bool Equal		(Set&);

	void Intersect	(Set&, Set&);

	void	Union		(Set&, Set&);

	void Print		(void);

private:

	int		elems[maxCard];			// set elements

	int		card;					// set cardinality

};�
�

Annotation

2	MaxCard denotes the maximum number of elements a set may have.

6	EmptySet clears the contents of the set by setting its cardinality to zero.

7	Member checks if a given number is an element of the set.

8	AddElem adds a new element to the set. If the element is already in the set then nothing happens. Otherwise, it is inserted. Should this result in an overflow then the element is not inserted.

9	RmvElem removes an existing element from the set, provided that element is already in the set.

10	Copy copies one set to another. The parameter of this function is a reference to the destination set.

11	Equal checks if two sets are equal. Two sets are equal if they contain exactly the same elements (the order of which is immaterial).

12	Intersect compares two sets to produce a third set (denoted by its last parameter) whose elements are in both sets. For example, the intersection of {2,5,3} and {7,5,2} is {2,5}.

 13	Union compares two sets to produce a third set (denoted by its last parameter) whose elements are in either or both sets. For example, the union of {2,5,3} and {7,5,2} is {2,5,3,7}.

14	Print prints a set using the conventional mathematical notation. For example, a set containing the numbers 5, 2, and 10 is printed as {5,2,10}.

16	The elements of the set are represented by the elems array.

17	The cardinality of the set is denoted by card. Only the first card entries in elems are considered to be valid elements.

	The separate definition of the member functions of a class is sometimes referred to as the implementation of the class. The implementation of the Set class is as follows.

Bool Set::Member (const int elem)

{

	for (register i = 0; i < card; ++i)

		if (elems[i] == elem)

			return true;

	return false;

}

void Set::AddElem (const int elem)

{

	if (Member(elem))

		return;

	if (card < maxCard)

		elems[card++] = elem;

	else

 	cout << "Set overflow\n";

}

void Set::RmvElem (const int elem)

{

	for (register i = 0; i < card; ++i)

		if (elems[i] == elem) {

			for (; i < card-1; ++i)	// shift elements left

				elems[i] = elems[i+1];

			--card;

		}

}

void Set::Copy (Set &set)

{

	for (register i = 0; i < card; ++i)

		set.elems[i] = elems[i];

	set.card = card;

}

Bool Set::Equal (Set &set)

{

	if (card != set.card)

		return false;

	for (register i = 0; i < card; ++i)

		if (!set.Member(elems[i]))

			return false;

	return true;

}

void Set::Intersect (Set &set, Set &res)

{

	res.card = 0;

	for (register i = 0; i < card; ++i)

		if (set.Member(elems[i]))

			res.elems[res.card++] = elems[i];

}

void Set::Union (Set &set, Set &res)

{

	set.Copy(res);

	for (register i = 0; i < card; ++i)

		res.AddElem(elems[i]);

}

void Set::Print (void)

{

	cout << "{";

	for (int i = 0; i < card-1; ++i)

		cout << elems[i] << ",";

	if (card > 0)		// no comma after the last element

		cout << elems[card-1];

	cout << "}\n";

}

	The following main function creates three Set objects and exercises some of its member functions.

int main (void)

{

	Set	s1, s2, s3;

	s1.EmptySet(); s2.EmptySet(); s3.EmptySet();

	s1.AddElem(10); s1.AddElem(20); s1.AddElem(30); s1.AddElem(40);

	s2.AddElem(30); s2.AddElem(50); s2.AddElem(10); s2.AddElem(60);

	cout << "s1 = ";	s1.Print();

	cout << "s2 = ";	s2.Print();

	s2.RmvElem(50);		cout << "s2 - {50} = ";		s2.Print();

	if (s1.Member(20)) cout << "20 is in s1\n";

	s1.Intersect(s2,s3);	cout << "s1 intsec s2 = ";	s3.Print();

	s1.Union(s2,s3);		cout << "s1 union s2 = ";	s3.Print();

	if (!s1.Equal(s2)) cout << "s1 /= s2\n";

	return 0;

}

When run, the program will produce the following output:

s1 = {10,20,30,40}

s2 = {30,50,10,60}

s2 - {50} = {30,10,60}

20 is in s1

s1 intsec s2 = {10,30}

s1 union s2 = {30,10,60,20,40}

s1 /= s2

		(

Constructors

It is possible to define and at the same time initialize objects of a class. This is supported by special member functions called constructors. A constructor always has the same name as the class itself. It never has an explicit return type. For example,

class Point {

	int xVal, yVal;

public:

		 Point (int x,int y) {xVal = x; yVal = y;} // constructor

	void OffsetPt (int,int);

};

is an alternative definition of the Point class, where SetPt has been replaced by a constructor, which in turn is defined to be inline.

	Now we can define objects of type Point and initialize them at once. This is in fact compulsory for classes that contain constructors that require arguments:

Point pt1 = Point(10,20);

Point pt2;					// illegal!

The former can also be specified in an abbreviated form.

Point pt1(10,20);

	A class may have more than one constructor. To avoid ambiguity, however, each of these must have a unique signature. For example,

class Point {

	int	 xVal, yVal;

public:

		 Point (int x, int y)	{ xVal = x; yVal = y; }

		 Point (float, float);	 			// polar coordinates

		 Point (void)			{ xVal = yVal = 0; } // origin

	void OffsetPt (int, int);

};

	

Point::Point (float len, float angle)	// polar coordinates

{

	xVal = (int) (len * cos(angle));

	yVal = (int) (len * sin(angle));

}

offers three different constructors. An object of type Point can be defined using any of these:

Point pt1(10,20);		// cartesian coordinates

Point pt2(60.3,3.14);	// polar coordinates

Point pt3;				// origin

	The Set class can be improved by using a constructor instead of EmptySet:

class Set {

public:

	Set	(void)		{ card = 0; }

	//...

};

This has the distinct advantage that the programmer need no longer remember to call EmptySet. The constructor ensures that every set is initially empty.

	The Set class can be further improved by giving the user control over the maximum size of a set. To do this, we define elems as an integer pointer rather than an integer array. The constructor can then be given an argument which specifies the desired size. This means that maxCard will no longer be the same for all Set objects and therfore needs to become a data member itself:

	

class Set {

public:

			Set (const int size);

	//...

private:

	int		*elems;				// set elements

 int		maxCard;				// maximum cardinality

	int		card;				// set cardinality

};

	The constructor simply allocates a dynamic array of the desired size and initializes maxCard and card accordingly:

Set::Set (const int size)

{

	elems = new int[size];

	maxCard = size;

 card = 0;

}

It is now possible to define sets of different maximum sizes:

Set ages(10), heights(20), primes(100);

	It is important to note that an object’s constructor is applied when the object is created. This in turn depends on the object’s scope. For example, a global object is created as soon as program execution commences; an automatic object is created when its scope is entered; and a dynamic object is created when the new operator is applied to it.	(

Destructors

Just as a constructor is used to initialize an object when it is created, a destructor is used to clean up the object just before it is destroyed. A destructor always has the same name as the class itself, but is preceded with a ~ symbol. Unlike constructors, a class may have at most one destructor. A destructor never takes any arguments and has no explicit return type.

	Destructors are generally useful for classes which have pointer data members which point to memory blocks allocated by the class itself. In such cases it is important to release member-allocated memory before the object is destroyed. A destructor can do just that.

	For example, our revised version of Set uses a dynamically-allocated array for the elems member. This memory should be released by a destructor:

class Set {

public:

			Set			(const int size);

			~Set		(void)	{delete elems;}	// destructor

	//...

private:

	int		*elems;		// set elements

 int		maxCard;		// maximum cardinality

	int		card;		// set cardinality

};

	Now consider what happens when a Set is defined and used in a function:

void Foo (void)

{

	Set s(10);

	//...

}

	When Foo is called, the constructor for s is invoked, allocating storage for s.elems and initializing its data members. Next the rest of the body of Foo is executed. Finally, before Foo returns, the destructor for s is invoked, deleting the storage occupied by s.elems. Hence, as far as storage allocation is concerned, s behaves just like an automatic variable of a built-in type, which is created when its scope is entered and destroyed when its scope is left.

	In general, an object’s constructor is applied just before the object is destroyed. This in turn depends on the object’s scope. For example, a global object is destroyed when program execution is completed; an automatic object is destroyed when its scope is left; and a dynamic object is destroyed when the delete operator is applied to it.	(

Friends

Occasionally we may need to grant a function access to the nonpublic members of a class. Such an access is obtained by declaring the function a friend of the class. There are two possible reasons for requiring this access:

�SYMBOL 183 \f "Symbol" \s 10 \h�	It may be the only correct way of defining the function.

�SYMBOL 183 \f "Symbol" \s 10 \h�	It may be necessary if the function is to be implemented efficiently.

Examples of the first case will be provided in Chapter 7, when we discuss overloaded input/output operators. An example of the second case is discussed below.

	Suppose that we have defined two variants of the Set class, one for sets of integers and one for sets of reals:

class IntSet {

public:

	//...

private:

	int elems[maxCard];

	int card;

};

class RealSet {

public:

	//...

private:

	float elems[maxCard];

	int card;

};

We want to define a function, SetToReal, which converts an integer set to a real set. We can do this by making the function a member of IntSet:

void IntSet::SetToReal (RealSet &set)

{

	set.EmptySet();

	for (register i = 0; i < card; ++i)

		set.AddElem((float) elems[i]);

}

Although this works, the overhead of calling AddElem for every member of the set may be unacceptable. The implementation can be improved if we could gain access to the private members of both IntSet and RealSet. This can be arranged by declaring SetToReal as a friend of RealSet.

class RealSet {

	//...

	friend void IntSet::SetToReal (RealSet&);

};

void IntSet::SetToReal (RealSet &set)

{

	set.card = card;

	for (register i = 0; i < card; ++i)

		set.elems[i] = (float) elems[i];

}

	The extreme case of having all member functions of a class A as friends of another class B can be expressed in an abbreviated form:

class A;

class B {

	//...

	friend class A;		// abbreviated form

};

	Another way of implementing SetToReal is to define it as a global function which is a friend of both classes:

class IntSet {

	//...

	friend void SetToReal (IntSet&, RealSet&);

};

class RealSet {

	//...

	friend void SetToReal (IntSet&, RealSet&);

};

void SetToReal (IntSet &iSet, RealSet &rSet)

{

	rSet.card = iSet.card;

	for (int i = 0; i < iSet.card; ++i)

		rSet.elems[i] = (float) iSet.elems[i];

}

	Although a friend declaration appears inside a class, that does not make the function a member of that class. In general, the position of a friend declaration in a class is irrelevant: whether it appears in the private, protected, or the public section, it has the same meaning.

		(

Default Arguments

As with global functions, a member function of a class may have default arguments. The same rules apply: all default arguments should be trailing arguments, and the argument should be an expression consisting of objects defined within the scope in which the class appears.

	For example, a constructor for the Point class may use default arguments to provide more variations of the way a Point object may be defined:

class Point {

	int	 xVal, yVal;

public:

		 Point (int x = 0, int y = 0);

	//...

};

	

Given this constructor, the following definitions are all valid:

Point	p1;				// same as: p1(0, 0)

Point	p2(10);			// same as: p2(10, 0)

Point	p3(10, 20);

	Careless use of default arguments can lead to undesirable ambiguity. For example, given the class

class Point {

	int	 xVal, yVal;

public:

		 Point (int x = 0, int y = 0);

		 Point (float x = 0, float y = 0);	// polar coordinates

	//...

};

the following definition will be rejected as ambiguous, because it matches both constructors:

Point p;					// ambiguous!

		(

Implicit Member Argument

When a class member function is called, it receives an implicit argument which denotes the particular object (of the class) for which the function is invoked. For example, in

Point pt(10,20);

pt.OffsetPt(2,2);

pt is an implicit argument to OffsetPt. Within the body of the member function, one can refer to this implicit argument explicitly as this, which denotes a pointer to the object for which the member is invoked. Using this, OffsetPt can be rewritten as:

Point::OffsetPt (int x, int y)

{

	this->xVal += x;		// equivalent to: xVal += x;

	this->yVal += y;		// equivalent to: yVal += y;

}

Use of this in this particular example is redundant. There are, however, programming cases where the use of the this pointer is essential. We will see examples of such cases in Chapter 7, when discussing overloaded operators.

	The this pointer can be used for referring to member functions in exactly the same way as it is used for data members. It is important to bear in mind, however, that this is defined for use within member functions of a class only. In particular, it is undefined for global functions (including global friend functions).

		(

Scope Operator

When calling a member function, we usually use an abbreviated syntax. For example:

pt.OffsetPt(2,2);			// abbreviated form

This is equivalent to the full form:

pt.Point::OffsetPt(2,2);		// full form

The full form uses the binary scope operator :: to indicate that OffsetPt is a member of Point.

	In some situations, using the scope operator is essential. For example, the case where the name of a class member is hidden by a local variable (e.g., member function parameter) can be overcome using the scope operator:

class Point {

public:

	Point (int x, int y)		{ Point::x = x; Point::y = y; }

	//...

private:

	int x, y;

}

Here x and y in the constructor (inner scope) hide x and y in the class (outer scope). The latter are referred to explicitly as Point::x and Point::y.

		(

Member Initialization List

There are two ways of initializing the data members of a class. The first approach involves initializing the data members using assignments in the body of a constructor. For example:

class Image {

public:

		Image	(const int w, const int h);

private:

	int	width;

	int	height;

 //...

};

Image::Image (const int w, const int h)

{

	width = w;

	height = h;

	//...

}

	The second approach uses a member initialization list in the definition of a constructor. For example:

class Image {

public:

		Image	(const int w, const int h);

private:

	int	width;

	int	height;

 //...

};

Image::Image (const int w, const int h) : width(w), height(h)

{

	//...

}

The effect of this declaration is that width is initialized to w and height is initialized to h. The only difference between this approach and the previous one is that here members are initialized before the body of the constructor is executed.

	A member initialization list may be used for initializing any data member of a class. It is always placed between the constructor header and body. A colon is used to separate it from the header. It should consist of a comma-separated list of data members whose initial value appears within a pair of brackets.

		(

Constant Members

A class data member may defined as constant. For example:

class Image {

	const int	width;

	const int	height;

 //...

};

However, data member constants cannot be initialized using the same syntax as for other constants:

class Image {

	const int	width = 256;		// illegal initializer!

	const int	height = 168;	// illegal initializer!

 //...

};

The correct way to initialize a data member constant is through a member initialization list:

class Image {

public:

				Image	(const int w, const int h);

private:

	const int	width;

	const int	height;

 //...

};

Image::Image (const int w, const int h) : width(w), height(h)

{

	//...

}

As one would expect, no member function is allowed to assign to a constant data member.

	A constant data member is not appropriate for defining the dimension of an array data member. For example, in

class Set {

public:

			Set			(void) : maxCard(10)		{ card = 0; }

	//...

private:

	const	maxCard;

	int		elems[maxCard];		// illegal!

	int		card;

};

the array elems will be rejected by the compiler for not having a constant dimension. The reason for this being that maxCard is not bound to a value during compilation, but when the program is run and the constructor is invoked.

	Member functions may also be defined as constant. This is used to specify which member functions of a class may be invoked for a constant object. For example,

class Set {

public:

			Set			(void)				{ card = 0; }

	Bool Member		(const int)	const;

	void	AddElem		(const int);

	//...

};

Bool Set::Member (const int elem) const

{

	//...

}

defines Member as a constant member function. To do so, the keyword const is inserted after the function header, both inside the class and in the function definition.

	A constant object can only be modified by the constant member functions of the class:

const Set s;

s.AddElem(10);		// illegal: AddElem not a const member

s.Member(10);		// ok

	Given that a constant member function is allowed to be invoked for constant objects, it would be illegal for it to attempt to modify any of the class data members.

	Constructors and destructors need never be defined as constant members, since they have permission to operate on constant objects. They are also exempted from the above rule and can assign to a data member of a constant object, unless the data member is itself a constant.

		(

Static Members

A data member of a class can be defined to be static. This ensures that there will be exactly one copy of the member, shared by all objects of the class. For example, consider a Window class which represents windows on a bitmap display:

class Window {

	static Window	*first;		// linked-list of all windows

	Window			*next;		// pointer to next window

	//...

};

Here, no matter how many objects of type Window are defined, there will be only one instance of first. Like other static variables, a static data member is by default initialized to 0. It can be initialized to an arbitrary value in the same scope where the member function definitions appear:

Window *Window::first = &myWindow;

The alternative is to make such variables global, but this is exactly what static members are intended to avoid; by including the variable in a class, we can ensure that it will be inaccessible to anything outside the class.

	Member functions can also be defined to be static. Semantically, a static member function is like a global function which is a friend of the class, but inaccessible outside the class. It does not receive an implicit argument and hence cannot refer to this. Static member functions are useful for defining call-back routines whose parameter lists are predetermined and outside the control of the programmer.

	For example, the Window class might use a call-back function for repainting exposed areas of the window:

class Window {

	//...

	static void PaintProc (Event *event);	// call-back

};

	Because static members are shared and do not rely on the this pointer, they are best referred to using the class::member syntax. For example, first and PaintProc would be referred to as Window::first and Window::PaintProc. Public static members can be referred to using this syntax by nonmember functions (e.g., global functions).

		(

Member Pointers

Recall how a function pointer was used in Chapter 5 to pass the address of a comparison function to a search function. It is possible to obtain and manipulate the address of a member function of a class in a similar fashion. As before, the idea is to make a function more flexible by making it independent of another function.

	The syntax for defining a pointer to a member function is slightly more complicated, since the class name must also be included in the function pointer type. For example,

typedef int (Table::*Compare)(const char*, const char*);

defines a member function pointer type called Compare for a class called Table. This type will match the address of any member function of Table which takes two constant character pointers and returns an int. Compare may be used for passing a pointer to a Search member of Table:

class Table {

public:

			Table	(const int slots);

	int		Search	(char *item, Compare comp);

	int		CaseSesitiveComp (const char*, const char*);

	int		NormalizedComp	 (const char*, const char*);

private:

	int		slots;

	char	**entries;

};

The definition of Table includes two sample comparison member functions which can be passed to Search. Search has to use a slightly complicated syntax for invoking the comparison function via comp:

int Table::Search (char *item, Compare comp)

{

	int bot = 0;

	int top = slots - 1;

	int mid, cmp;

	while (bot <= top) {

		mid = (bot + top) / 2;

		if ((cmp = (this->*comp)(item, entries[mid])) == 0)

			return mid;			// return item index

		else if (cmp < 0)

			top = mid - 1;		// restrict search to lower half

		else

			bot = mid + 1;		// restrict search to upper half

	}

	return -1;					// not found

}

	Note that comp can only be invoked via a Table object (the this pointer is used in this case). None of the following attempts, though seemingly reasonable, will work:

(*comp)(item, entries[mid]);			// illegal: no class object!

(Table::*comp)(item, entries[mid]);	// illegal: no class object!

this->*comp(item, entries[mid]);		// illegal: need brackets!

The last attempt will be interpreted as:

this->*(comp(item, entries[mid]));	// unintended precedence!

Therefore the brackets around this->*comp are necessary. Using a Table object instead of this will require the following syntax:

Table tab(10);

(tab.*comp)(item, entries[mid])

	Search can be called and passed either of the two comparison member functions of Table. For example:

tab.Search("Sydney", Table::NormalizedComp);

	The address of a data member can be obtained using the same syntax as for a member function. For example,

int	Table::*n = &Table::slots;

int m = this->*n;

int p = tab.*n;

	The above class member pointer syntax applies to all members except for static. Static members are essentially global entities whose scope has been limited to a class. Pointers to static members use the conventional syntax of global entities.

	In general, the same protection rules apply as before: to take the address of a class member (data or function) one should have access to it. For example, a function which does not have access to the private members of a class cannot take the address of any of those members.

		(

References Members

A class data member may defined as reference. For example:

class Image {

	int	width;

	int	height;

	int	&widthRef;

 //...

};

As with data member constants, a data member reference cannot be initialized using the same syntax as for other references:

class Image {

	int	width;

	int	height;

	int	&widthRef = width;		// illegal!

 //...

};

The correct way to initialize a data member reference is through a member initialization list:

class Image {

public:

				Image	(const int w, const int h);

private:

	int	width;

	int	height;

	int	&widthRef;

 //...

};

Image::Image (const int w, const int h) : widthRef(width)

{

	//...

}

This causes widthRef to be a reference for width.

		(

Class Object Members

A data member of a class may be of a user-defined type, that is, an object of another class. For example, a Rectangle class may be defined using two Point data members which represent the top-left and bottom-right corners of the rectangle:

class Rectangle {

public:

			Rectangle (int left, int top, int right, int bottom);

	//...

private:

	Point	topLeft;

	Point	botRight;

};

The constructor for Rectangle should also initialize the two object members of the class. Assuming that Point has a constructor, this is done by including topLeft and botRight in the member initialization list of the constructor for Rectangle:

Rectangle::Rectangle (int left, int top, int right, int bottom)

	: topLeft(left,top), botRight(right,bottom)

{

}

If the constructor for Point takes no parameters, or if it has default arguments for all of its parameters, then the above member initialization list may be omitted. Of course, the constructor is still implicitly called.

	The order of initialization is always as follows. First, the constructor for topLeft is invoked, followed by the constructor for botRight, and finally the constructor for Rectangle itself. Object destruction always follows the opposite direction. First the destructor for Rectangle (if any) is invoked, followed by the destructor for botRight, and finally for topLeft. The reason that topLeft is initialized before botRight is not that it appears first in the member initialization list, but because it appears before botRight in the class itself. Therefore, defining the constructor as follows would not change the initialization (or destruction) order:

Rectangle::Rectangle (int left, int top, int right, int bottom)

	: botRight(right,bottom), topLeft(left,top)

{

}

		(

Object Arrays

An array of a user-defined type is defined and used much in the same way as an array of a built-in type. For example, a pentagon can be defined as an array of 5 points:

Point pentagon[5];

This definition assumes that Point has an ‘argument-less’ constructor (i.e., one which can be invoked without arguments). The constructor is applied to each element of the array.

	The array can also be initialized using a normal array initializer. Each entry in the initialization list would invoke the constructor with the desired arguments. When the initializer has less entries than the array dimension, the remaining elements are initialized by the argument-less constructor. For example,

Point pentagon[5] = {

	Point(10,20), Point(10,30), Point(20,30), Point(30,20)

};

initializes the first four elements of pentagon to explicit points, and the last element is initialized to (0,0).

	When the constructor can be invoked with a single argument, it is sufficient to just specify the argument. For example,

Set sets[4] = {10, 20, 20, 30};

is an abbreviated version of:

Set sets[4] = {Set(10), Set(20), Set(20), Set(30)};

	An array of objects can also be created dynamically using new:

Point *petagon = new Point[5];

When the array is finally deleted using delete, a pair of [] should be included:

delete [] pentagon;		// destroys all array elements

Unless the [] is included, delete will have no way of knowing that pentagon denotes an array of points and not just a single point. The destructor (if any) is applied to the elements of the array in reverse order before the array is deleted. Omitting the [] will cause the destructor to be applied to just the first element of the array:

delete pentagon;			// destroys only the first element!

	Since the objects of a dynamic array cannot be explicitly initialized at the time of creation, the class must have an argument-less constructor to handle the implicit initialization. When this implicit initialization is insufficient, the programmer can explicitly reinitialize any of the elements later:

pentagon[0].Point(10, 20);

pentagon[1].Point(10, 30);

//...

	Dynamic object arrays are useful in circumstances where we cannot predetermine the size of the array. For example, a general polygon class has no way of knowing in advance how many vertices a polygon may have:

class Polygon {

public:

	//...

private:

	Point	*vertices;		// the vertices

	int		nVertices;		// the number of vertices

};

		(

Class Scope

A class introduces a class scope much in the same way a function (or block) introduces a local scope. All the class members belong to the class scope and thus hide entities with identical names in the enclosing scope. For example, in

int fork (void);			// system fork

class Process {

	int fork (void);

	//...

};

the member function fork hides the global system function fork. The former can refer to the latter using the unary scope operator:

int Process::fork (void)

{

	int pid = ::fork();		// use global system fork

	//...

}

	A class itself may be defined at any one of three possible scopes:

�SYMBOL 183 \f "Symbol" \s 10 \h�	At the global scope. This leads to a global class, whereby it can be referred to by all other scopes. The great majority of C++ classes (including all the examples presented so far in this chapter) are defined at the global scope.

�SYMBOL 183 \f "Symbol" \s 10 \h�	At the class scope of another class. This leads to a nested class, where a class is contained by another class.

�SYMBOL 183 \f "Symbol" \s 10 \h�	At the local scope of a block or function. This leads to a local class, where the class is completely contained by a block or function.

	A nested class is useful when a class is used only by one other class. For example,

class Rectangle {			// a nested class

public:

			Rectangle (int, int, int, int);

	//..

private:

	class Point {

	public:

			Point	(int, int);

 private:

		int x, y;

	};

	Point	topLeft, botRight;

};

defines Point as nested by Rectangle. The member functions of Point may be defined either inline inside the Point class or at the global scope. The latter would require further qualification of the member function names by preceding them with Rectangle::

Rectangle::Point::Point (int x, int y)

{

	//...

}

	A nested class may still be accessed outside its enclosing class by fully qualifying the class name. The following, for example, would be valid at any scope (assuming that Point is made public within Rectangle):

Rectangle::Point pt(1,1);

	A local class is useful when a class is used by only one function — be it a global function or a member function — or even just one block. For example,

void Render (Image &image)

{

	class ColorTable {

 public:

		ColorTable	(void)					{ /* ... */ }

		AddEntry	(int r, int g, int b)	{ /* ... */ }

		//...

	};

	ColorTable colors;

	//...

}

defines ColorTable as a class local to Render.

	Unlike a nested class, a local class is not accessible outside the scope within which it is defined. The following, therefore, would be illegal at the global scope:

ColorTable ct;		// undefined!

	A local class must be completely defined inside the scope in which it appears. All of its functions members, therefore, need to be defined inline inside the class. This implies that a local scope is not suitable for defining anything but very simple classes.

		(

Structures and Unions

A structure is a class all of whose members are by default public. (Remember that all of the members of a class are by default private.) Structures are defined using the same syntax as classes, except that the keyword struct is used instead of class. For example,

struct Point {

		 Point		(int, int);

	void OffsetPt	(int, int);

	int x, y;

};

is equivalent to:

class Point {

public:

		 Point		(int, int);

	void OffsetPt	(int, int);

	int	 x, y;

};

	The struct construct originated in C, where it could only contain data members. It has been retained mainly for backward compatibility reasons. In C, a structure can have an initializer with a syntax similar to that of an array. C++ allows such initializers for structures and classes all of whose data members are public:

class Employee {

public:

	char	*name;

	int		age;

	double	salary;

};

Employee emp = {"Jack", 24, 38952.25};

The initializer consists of values which are assigned to the data members of the structure (or class) in the order they appear. This style of initialization is largely superseded by constructors. Furthermore, it cannot be used with a class that has a constructor.

	A union is a class all of whose data members are mapped to the same address within its object (rather than sequentially as is the case in a class). The size of an object of a union is, therefore, the size of its largest data member.

	The main use of unions is for situations where an object may assume values of different types, but only one at a time. For example, consider an interpreter for a simple programming language, called P, which supports a number of data types such as: integers, reals, strings, and lists. A value in this language may be defined to be of the type:

union Value {

	long	integer;

	double	real;

	char	*string;

	Pair	list;

	//...

};

where Pair is itself a user-defined type for creating lists:

class Pair {

	Value	*head;

	Value	*tail;

	//...

};

Assuming that a long is 4 bytes, a double 8 bytes, and a pointer 4 bytes, an object of type Value would be exactly 8 bytes, i.e., the same as the size of a double or a Pair object (the latter being equal to two pointers).

	An object in P can be represented by the class,

class Object {

private:

	enum ObjType {intObj, realObj, strObj, listObj};

	ObjType type;		// object type

	Value	val;		// object value

	//...

};

where type provides a way of recording what type of value the object currently has. For example, when type is set to strObj, val.string is used for referring to its value.

	Because of the unique way in which its data members are mapped to memory, a union may not have a static data member or a data member which requires a constructor.

	Like a structure, all of the members of a union are by default public. The keywords private, public, and protected may be used inside a struct or a union in exactly the same way they are used inside a class for defining private, public, and protected members.

		(

Bit Fields

It is sometimes desirable to directly control an object at the bit level, so that as many individual data items as possible can be packed into a bit stream without worrying about byte or word boundaries.

	For example, in data communication, data is transferred in discrete units called packets. In addition to the user data that it carries, each packet also contains a header which is comprised of network-related information for managing the transmission of the packet across the network. To minimize the cost of transmission, it is desirable to minimize the space taken by the header. Figure 6.�seq figure Packet�1� illustrates how the header fields are packed into adjacent bits to achieve this.

Figure 6.�seq figure�1�	Header fields of a packet.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	These fields can be expressed as bit field data members of a Packet class. A bit field may be defined to be of type int or unsigned int:

typedef unsigned int Bit;

class Packet {

	Bit	type		: 2;	// 2 bits wide

	Bit acknowledge	: 1;	// 1 bit wide

	Bit channel		: 4;	// 4 bits wide

	Bit	sequenceNo	: 4;	// 4 bite wide

	Bit	moreData	: 1;	// 1 bit wide

	//...

};

	A bit field is referred to in exactly the same way as any other data member. Because a bit field does not necessarily start on a byte boundary, it is illegal to take its address. For the same reason, a bit field cannot be defined as static.

	Use of enumerations can make working with bit fields easier. For example, given the enumerations

enum PacketType {dataPack, controlPack, supervisoryPack};

enum Bool		{false, true};

we can write:

Packet p;

p.type = controlPack;

p.acknowledge = true;											(

Exercises

6.�seq exercise�1�	Explain why the Set parameters of the Set member functions are declared as references.

6.�seq exercise�2�	Define a class named Complex for representing complex numbers. A complex number has the general form a + ib, where a is the real part and b is the imaginary part (i stands for imaginary). Complex arithmetic rules are as follows:

	(a + ib) + (c + id)	=	(a + c) + i(b + d)

	(a + ib) – (c + id)	=	(a + c) – i(b + d)

	(a + ib) * (c + id)	=	(ac – bd) + i(bc + ad)

	

Define these operations as member functions of Complex.

6.�seq exercise�3�	Define a class named Menu which uses a linked-list of strings to represent a menu of options. Use a nested class, Option, to represent the set elements. Define a constructor, a destructor, and the following member functions for Menu:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Insert which inserts a new option at a given position. Provide a default argument so that the item is appended to the end.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Delete which deletes an existing option.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Choose which displays the menu and invites the user to choose an option.

6.�seq exercise�4�	Redefine the Set class as a linked-list so that there would be no restriction on the number of elements a set may have. Use a nested class, Element, to represent the set elements.

6.�seq exercise�5�	Define a class named Sequence for storing sorted strings. Define a constructor, a destructor, and the following member functions for Sequence:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Insert which inserts a new string into its sort position.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Delete which deletes an existing string.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Find which searches the sequence for a given string and returns true if it finds it, and false otherwise.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Print which prints the sequence strings.

6.�seq exercise�6�	Define class named BinTree for storing sorted strings as a binary tree. Define the same set of member functions as for Sequence from the previous exercise.

6.�seq exercise�7�	Define a member function for BinTree which converts a sequence to a binary tree, as a friend of Sequence. Use this function to define a constructor for BinTree which takes a sequence as argument.

6.�seq exercise�8�	Add an integer ID data member to the Menu class (Exercise 6.�seq exercise MenuExercise�3�) so that all menu objects are sequentially numbered, starting from 0. Define an inline member function which returns the ID. How will you keep track of the last allocated ID?

6.�seq exercise�9�	Modify the Menu class so that an option can itself be a menu, thereby allowing nested menus.

		(

�PAGE�114�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 6: Classes	�PAGE�113�

