

7.	Overloading

This chapter discusses the overloading of functions and operators in C++. The term overloading means ‘providing multiple definitions of’. Overloading of functions involves defining distinct functions which share the same name, each of which has a unique signature. Function overloading is appropriate for:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Defining functions which essentially do the same thing, but operate on different data types.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Providing alternate interfaces to the same function.

Function overloading is purely a programming convenience.

	Operators are similar to functions in that they take operands (arguments) and return a value. Most of the built-in C++ operators are already overloaded. For example, the + operator can be used to add two integers, two reals, or two addresses. Therefore, it has multiple definitions. The built-in definitions of the operators are restricted to built-in types. Additional definitions can be provided by the programmer, so that they can also operate on user-defined types. Each additional definition is implemented by a function.

	The overloading of operators will be illustrated using a number of simple classes. We will discuss how type conversion rules can be used to reduce the need for multiple overloadings of the same operator. We will present examples of overloading a number of popular operators, including << and >> for IO, [] and () for container classes, and the pointer operators. We will also discuss memberwise initialization and assignment, and the importance of their correct implementation in classes which use dynamically-allocated data members.

	Unlike functions and operators, classes cannot be overloaded; each class must have a unique name. However, as we will see in Chapter 8, classes can be altered and extended through a facility called inheritance. Also functions and classes can be written as templates, so that they become independent of the data types they employ. We will discuss templates in Chapter 9.

Function Overloading

Consider a function, GetTime, which returns in its parameter(s) the current time of the day, and suppose that we require two variants of this function: one which returns the time as seconds from midnight, and one which returns the time as hours, minutes, and seconds. Given that these two functions serve the same purpose, there is no reason for them to have different names.

	C++ allows functions to be overloaded, that is, the same function to have more than one definition:

long GetTime (void);			// seconds from midnight

void GetTime (int &hours, int &minutes, int &seconds);

	When GetTime is called, the compiler compares the number and type of arguments in the call against the definitions of GetTime and chooses the one that matches the call. For example:

int h, m, s;

long t = GetTime();		// matches GetTime(void)

GetTime(h, m, s);		// matches GetTime(int&, int&, int&);

	To avoid ambiguity, each definition of an overloaded function must have a unique signature.

	Member functions of a class may also be overloaded:

class Time {

	//...

	long GetTime (void);			// seconds from midnight

	void GetTime (int &hours, int &minutes, int &seconds);

};

	Function overloading is useful for obtaining flavors that are not possible using default arguments alone. Overloaded functions may also have default arguments:

void Error (int errCode, char *errMsg = "");

void Error (char *errMsg);

		(

Operator Overloading

C++ allows the programmer to define additional meanings for its predefined operators by overloading them. For example, we can overload the + and - operators for adding and subtracting Point objects:

class Point {

public:

	Point (int x, int y)			{Point::x = x; Point::y = y;}

	Point operator + (Point &p)	{return Point(x + p.x,y + p.y);}

	Point operator - (Point &p)	{return Point(x - p.x,y - p.y);}

private:

	int x, y;

};

After this definition, + and - can be used for adding and subtracting points, much in the same way as they are used for adding and subtracting numbers:

Point p1(10,20), p2(10,20);

Point p3 = p1 + p2;

Point p4 = p1 - p2;

	The above overloading of + and - uses member functions. Alternatively, an operator may be overloaded globally:

class Point {

public:

	Point (int x, int y)		{Point::x = x; Point::y = y;}

	friend Point operator + (Point &p, Point &q)

							{return Point(p.x + q.x,p.y + q.y);}

	friend Point operator - (Point &p, Point &q)

							{return Point(p.x - q.x,p.y - q.y);}

private:

	int x, y;

};

	The use of an overloaded operator is equivalent to an explicit call to the function which implements it. For example:

operator+(p1, p2)		// is equivalent to: p1 + p2

	In general, to overload a predefined operator (, we define a function named operator(. If (is a binary operator:

�SYMBOL 183 \f "Symbol" \s 10 \h�	operator(must take exactly one argument if defined as a class member, or two arguments if defined globally.

However, if (is a unary operator:

�SYMBOL 183 \f "Symbol" \s 10 \h�	operator(must take no arguments if defined as a member function, or one argument if defined globally.

	Table 7.�seq figure OverloadOps�
1
� summarizes the C++ operators which can be overloaded. The remaining five operators cannot be overloaded:

.		.*		::		?:		sizeof		// not overloadable

Figure 7.�seq figure�
1
�	Overloadable operators.

Unary:�+�-�*�!�~�&�++�--�()�->�->*���new�delete����������Binary:�+�-�*�/�%�&�|�^�<<�>>����=�+=�-=�/=�%=�&=�|=�^=�<<=�>>=����==�!=�<�>�<=�>=�&&�||�[]�()�,��

	A strictly unary operator (e.g., ~) cannot be overloaded as binary, nor can a strictly binary operator (e.g., =) be overloaded as unary.

	C++ does not support the definition of new operator tokens, because this can lead to ambiguity. Furthermore, the precedence rules for the predefined operators is fixed and cannot be altered. For example, no matter how you overload *, it will always have a higher precedence than +.

	Operators ++ and -- can be overloaded as prefix as well as postfix. Equivalence rules do not hold for overloaded operators. For example, overloading + does not affect +=, unless the latter is also explicitly overloaded. Operators ->, =, [], and () can only be overloaded as member functions, and not globally.

	To avoid the copying of large objects when passing them to an overloaded operator, references should be used. Pointers are not suitable for this purpose because an overloaded operator cannot operate exclusively on pointers.

		(

Example: Set Operators

The Set class was introduced in Chapter 6. Most of the Set member functions are better defined as overloaded operators. Listing 7.�seq listing SetOperators�
1
� illustrates.

Listing 7.�seq listing�
1
�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19�#include <iostream.h>

const	maxCard = 100;

enum	Bool {false, true};

class Set {

public:

				Set			(void)		{ card = 0; }

	friend Bool operator & (const int, Set&);	// membership

	friend Bool operator == (Set&, Set&);		// equality

	friend Bool operator != (Set&, Set&);		// inequality

	friend Set operator * (Set&, Set&);		// intersection

	friend Set operator + (Set&, Set&);		// union

	//...

	void	AddElem (const int elem);

	void	Copy	(Set &set);

 void	Print	(void);

private:

	int		elems[maxCard];				// set elements

	int		card;						// set cardinality

};��

	Here, we have decided to define the operator functions as global friends. They could have just as easily been defined as member functions. The implementation of these functions is as follow.

Bool operator & (const int elem, Set &set)

{

	for (register i = 0; i < set.card; ++i)

		if (elem == set.elems[i])

			return true;

	return false;

}

Bool operator == (Set &set1, Set &set2)

{

	if (set1.card != set2.card)

		return false;

	for (register i = 0; i < set1.card; ++i)

		if (!(set1.elems[i] & set2))			// use overloaded &

			return false;

	return true;

}

Bool operator != (Set &set1, Set &set2)

{

	return !(set1 == set2);				// use overloaded ==

}

Set operator * (Set &set1, Set &set2)

{

	Set res;

	for (register i = 0; i < set1.card; ++i)

		if (set1.elems[i] & set2)			// use overloaded &

			res.elems[res.card++] = set1.elems[i];

 return res;

}

Set operator + (Set &set1, Set &set2)

{

	Set res;

	set1.Copy(res);

	for (register i = 0; i < set2.card; ++i)

		res.AddElem(set2.elems[i]);

	return res;

}

	The syntax for using these operators is arguably neater than those of the functions they replace, as illustrated by the following main function:

int main (void)

{

	Set	s1, s2, s3;

	s1.AddElem(10); s1.AddElem(20); s1.AddElem(30); s1.AddElem(40);

	s2.AddElem(30); s2.AddElem(50); s2.AddElem(10); s2.AddElem(60);

	cout << "s1 = ";	s1.Print();

	cout << "s2 = ";	s2.Print();

	if (20 & s1) cout << "20 is in s1\n";

	cout << "s1 intsec s2 = ";	(s1 * s2).Print();

	cout << "s1 union s2 = ";	(s1 + s2).Print();

	if (s1 != s2) cout << "s1 /= s2\n";

	return 0;

}

When run, the program will produce the following output:

s1 = {10,20,30,40}

s2 = {30,50,10,60}

20 is in s1

s1 intsec s2 = {10,30}

s1 union s2 = {10,20,30,40,50,60}

s1 /= s2

		(

Type Conversion

The normal built-in type conversion rules of the language also apply to overloaded functions and operators. For example, in

if ('a' & set)

	//...

the first operand of & (i.e., 'a') is implicitly converted from char to int, because overloaded & expects its first operand to be of type int.

	Any other type conversion required in addition to these must be explicitly defined by the programmer. For example, suppose we want to overload + for the Point type so that it can be used to add two points, or to add an integer value to both coordinates of a point:

class Point {

	//...

	friend Point operator + (Point, Point);

	friend Point operator + (int, Point);

	friend Point operator + (Point, int);

};

To make + commutative, we have defined two functions for adding an integer to a point: one for when the integer is the first operand, and one for when the integer is the second operand. It should be obvious that if we start considering other types in addition to int, this approach will ultimately lead to an unmanageable variations of the operator.

	A better approach is to use a constructor to convert the object to the same type as the class itself so that one overloaded operator can handle the job. In this case, we need a constructor which takes an int, specifying both coordinates of a point:

class Point {

	//...

	Point (int x) { Point::x = Point::y = x; }

	friend Point operator + (Point, Point);

};

For constructors of one argument, one need not explicitly call the constructor:

Point p = 10;				// equivalent to: Point p(10);

Hence, it is possible to write expressions that involve variables or constants of type Point and int using the + operator.

Point p(10,20), q = 0;

q = p + 5;					// equivalent to: q = p + Point(5);

Here, 5 is first converted to a temporary Point object and then added to p. The temporary object is then destroyed. The overall effect is an implicit type conversion from int to Point. The final value of q is therefore (15,25).

	What if we want to do the opposite conversion, from the class type to another type? In this case, constructors cannot be used because they always return an object of the class to which they belong. Instead, one can define a member function which explicitly converts the object to the desired type.

	For example, given a Rectangle class, we can define a type conversion function which converts a rectangle to a point, by overloading the type operator Point in Rectangle:

class Rectangle {

public:

	Rectangle (int left, int top, int right, int bottom);

 Rectangle (Point &p, Point &q);

	//...

 operator Point ()	{return botRight - topLeft;}

private:

	Point	topLeft;

	Point	botRight;

};

This operator is defined to convert a rectangle to a point, whose coordinates represent the width and height of the rectangle. Therefore, in the code fragment

Point		p(5,5);

Rectangle	r(10,10,20,30);

r + p;

rectangle r is first implicitly converted to a Point object by the type conversion operator, and then added to p.

	The type conversion Point can also be applied explicitly using the normal type cast notation. For example:

Point(r);		// explicit type-cast to a Point

(Point)r;		// explicit type-cast to a Point

	In general, given a user-defined type X and another (built-in or user-defined) type Y:

�SYMBOL 183 \f "Symbol" \s 10 \h�	A constructor defined for X which takes a single argument of type Y will implicitly convert Y objects to X objects when needed.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Overloading the type operator Y in X will implicitly convert X objects to Y objects when needed.

class X {

	//...

	X (Y&);			// convert Y to X

	operator Y ();	// convert X to Y

};

	One of the disadvantages of user-defined type conversion methods is that, unless they are used sparingly, they can lead to programs whose behaviors can be very difficult to predict. There is also the additional risk of creating ambiguity. Ambiguity occurs when the compiler has more than one option open to it for applying user-defined type conversion rules, and therefore unable to choose. All such cases are reported as errors by the compiler.

	To illustrate possible ambiguities that can occur, suppose that we also define a type conversion constructor for Rectangle (which takes a Point argument) as well as overloading the + and - operators:

class Rectangle {

public:

	Rectangle (int left, int top, int right, int bottom);

 Rectangle (Point &p, Point &q);

	Rectangle (Point &p);

 operator Point ()	{return botRight - topLeft;}

	friend Rectangle operator + (Rectangle &r, Rectangle &t);

	friend Rectangle operator - (Rectangle &r, Rectangle &t);

private:

	Point	topLeft;

	Point	botRight;

};

Now, in

Point		p(5,5);

Rectangle	r(10,10,20,30);

r + p;

r + p can be interpreted in two ways. Either as

r + Rectangle(p)			// yields a Rectangle

or as:

Point(r) + p				// yields a Point

Unless the programmer resolves the ambiguity by explicit type conversion, this will be rejected by the compiler.

		(

Example: Binary Number Class

Listing 7.�seq listing BinaryNumbers�
2
� defines a class for representing 16-bit binary numbers as sequences of 0 and 1 characters.

Listing 7.�seq listing�
2
�

1

2

3

4

5

6

7

8

9

10

11

12

13�#include <iostream.h>

#include <string.h>

int const binSize = 16;

class Binary {

public:

				Binary		 (const char*);

				Binary		 (unsigned int);

friend	Binary	operator +	 (const Binary, const Binary);

				operator int ();		// type conversion

		void	Print		 (void);

private:

		char	bits[binSize];			// binary quantity

};��

Annotation

6	This constructor produces a binary number from its bit pattern.

7	This constructor converts a positive integer to its equivalent binary representation.

8	The + operator is overloaded for adding two binary numbers. Addition is done bit by bit. For simplicity, no attempt is made to detect overflows.

9	This type conversion operator is used to convert a Binary object to an int object.

10	This function simply prints the bit pattern of a binary number.

12	This array is used to hold the 0 and 1 bits of the 16-bit quantity as characters.

The implementation of these functions is as follows:

Binary::Binary (const char *num)

{

	int iSrc = strlen(num) - 1;

	int iDest = binSize - 1;

	while (iSrc >= 0 && iDest >= 0)		// copy bits

	 bits[iDest--] = (num[iSrc--] == '0' ? '0' : '1');

	while (iDest >= 0)					// pad left with zeros

	 bits[iDest--] = '0';

}

Binary::Binary (unsigned int num)

{

	for (register i = binSize - 1; i >= 0; --i) {

	 bits[i] = (num % 2 == 0 ? '0' : '1');

	 num >>= 1;

	}

}

Binary operator + (const Binary n1, const Binary n2)

{

	unsigned carry = 0;

	unsigned value;

	Binary res = "0";

	for (register i = binSize - 1; i >= 0; --i) {

	 value = (n1.bits[i] == '0' ? 0 : 1) +

	 (n2.bits[i] == '0' ? 0 : 1) + carry;

	 res.bits[i] = (value % 2 == 0 ? '0' : '1');

	 carry = value >> 1;

	}

	return res;

}

Binary::operator int ()

{

	unsigned value = 0;

	for (register i = 0; i < binSize; ++i)

	 value = (value << 1) + (bits[i] == '0' ? 0 : 1);

	return value;

}

void Binary::Print (void)

{

	char str[binSize + 1];

	strncpy(str, bits, binSize);

	str[binSize] = '\0';

	cout << str << '\n';

}

	The following main function creates two objects of type Binary and tests the + operator.

main ()

{

	Binary n1 = "01011";

	Binary n2 = "11010";

	n1.Print();

	n2.Print();

	(n1 + n2).Print();

	cout << n1 + Binary(5) << '\n';	// add and then convert to int

	cout << n1 - 5 << '\n';	// convert n2 to int and then subtract

}

The last two lines of main behave completely differently. The first of these converts 5 to Binary, does the addition, and then converts the Binary result to int, before sending it to cout. This is equivalent to:

cout << (int) Binary::operator+(n2,Binary(5)) << '\n';

The second converts n1 to int (because - is not defined for Binary), performs the subtraction, and then send the result to cout. This is equivalent to:

cout << ((int) n2) - 5 << '\n';

	In either case, the user-defined type conversion operator is applied implicitly. The output produced by the program is evidence that the conversions are performed correctly:

0000000000001011

0000000000011010

0000000000100101

16

6

		(

Overloading << for Output

The simple and uniform treatment of output for built-in types is easily extended to user-defined types by further overloading the << operator. For any given user-defined type T, we can define an operator<< function which outputs objects of type T:

ostream& operator << (ostream&, T&);

The first parameter must be a reference to ostream so that multiple uses of << can be concatenated. The second parameter need not be a reference, but this is more efficient for large objects.

	For example, instead of the Binary class’s Print member function, we can overload the << operator for the class. Because the first operand of << must be an ostream object, it cannot be overloaded as a member function. It should therefore be defined as a global function:

class Binary {

	//...

	friend	ostream& operator << (ostream&, Binary&);

};

ostream& operator << (ostream &os, Binary &n)

{

	char str[binSize + 1];

	strncpy(str, n.bits, binSize);

	str[binSize] = '\0';

	cout << str;

	return os;

}

Given this definition, << can be used for the output of binary numbers in a manner identical to its use for the built-in types. For example,

Binary n1 = "01011", n2 = "11010";

cout << n1 << " + " << n1 << " = " << n1 + n2 << '\n';

will produce the following output:

0000000000001011 + 0000000000011010 = 0000000000100101

	In addition to its simplicity and elegance, this style of output eliminates the burden of remembering the name of the output function for each user-defined type. Without the use of overloaded <<, the last example would have to be written as (assuming that \n has been removed from Print):

Binary n1 = "01011", n2 = "11010";

n1.Print(); cout << " + "; n2.Print();

cout << " = "; (n1 + n2).Print(); cout << '\n';					(

Overloading >> for Input

Input of user-defined types is facilitated by overloading the >> operator, in a manner similar to the way << is overloaded. For any given user-defined type T, we can define an operator>> function which inputs objects of type T:

istream& operator >> (istream&, T&);

The first parameter must be a reference to istream so that multiple uses of >> can be concatenated. The second parameter must be a reference, since it will be modified by the function.

	Continuing with the Binary class example, we overload the >> operator for the input of bit streams. Again, because the first operand of >> must be an istream object, it cannot be overloaded as a member function:

class Binary {

	//...

	friend	istream& operator >> (istream&, Binary&);

};

istream& operator >> (istream &is, Binary &n)

{

	char str[binSize + 1];

	cin >> str;

 n = Binary(str);		// use the constructor for simplicity

	return is;

}

Given this definition, >> can be used for the input of binary numbers in a manner identical to its use for the built-in types. For example,

Binary n;

cin >> n;

will read a binary number from the keyboard into to n.

		(

Overloading []

Listing 7.�seq listing AssocVec�
3
� defines a simple associative vector class. An associative vector is a one-dimensional array in which elements can be looked up by their contents rather than their position in the array. In AssocVec, each element has a string name (via which it can be looked up) and an associated integer value.

Listing 7.�seq listing�
3
�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15�#include <iostream.h>

#include <string.h>

class AssocVec {

public:

			AssocVec	(const int dim);

			~AssocVec	(void);

	int& 	operator []	(const char *idx);

private:

	struct VecElem {

		char	*index;

		int		value;

	}		*elems;			// vector elements

	int 	dim;			// vector dimension

	int 	used;			// elements used so far

};��

Annotation

5	The constructor creates an associative vector of the dimension specified by its argument.

7	The overloaded [] operator is used for accessing vector elements. The function which overloads [] must have exactly one parameter. Given a string index, it searches the vector for a match. If a matching index is found then a reference to its associated value is returned. Otherwise, a new element is created and a reference to this value is returned.

12	The vector elements are represented by a dynamic array of VecElem structures. Each vector element consists of a string (denoted by index) and an integer value (denoted by value).

The implementation of the member functions is as follows:

AssocVec::AssocVec (const int dim)

{

	AssocVec::dim = dim;

	used = 0;

	elems = new VecElem[dim];

}

AssocVec::~AssocVec (void)

{

	for (register i = 0; i < used; ++i)

		delete elems[i].index;

	delete [] elems;

}

int& AssocVec::operator [] (const char *idx)

{

	for (register i = 0; i < used; ++i)	// search existing elements

		if (strcmp(idx,elems[i].index) == 0)

			return elems[i].value;

	if (used < dim &&	 // create new element

	 (elems[used].index = new char[strlen(idx)+1]) != 0) {

		strcpy(elems[used].index,idx);

		elems[used].value = used + 1;

		return elems[used++].value;

	}

	static int dummy = 0;

	return dummy;

}

	Note that, because AssocVec::operator[] must return a valid reference, a reference to a dummy static integer is returned when the vector is full or when new fails.

	A reference expression is an lvalue and hence can appear on both sides of an assignment. If a function returns a reference then a call to that function can be assigned to. This is why the return type of AssocVec::operator[] is defined to be a reference.

	Using AssocVec we can now create associative vectors that behave very much like normal vectors:

AssocVec count(5);

count["apple"] = 5;

count["orange"] = 10;

count["fruit"] = count["apple"] + count["orange"];

This will set count["fruit"] to 15.

		(

Overloading ()

Listing 7.�seq listing Matrix�
4
� defines a matrix class. A matrix is a table of values (very similar to a two-dimensional array) whose size is denoted by the number of rows and columns in the table. An example of a simple 2 x 3 matrix would be:

� EMBED Word.Document.8 ���

The standard mathematical notation for referring to matrix elements uses brackets. For example, element 20 of M (i.e., in the first row and second column) is referred to as M(1,2). Matrix algebra provides a set of operations for manipulating matrices, which includes addition, subtraction, and multiplication.

Listing 7.�seq listing�
4
�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15�#include <iostream.h>

class Matrix {

public:

				 Matrix		 (const short rows, const short cols);

				 ~Matrix	 (void)				{delete elems;}

		double&	 operator () (const short row, const short col);

friend	ostream&	 operator << (ostream&, Matrix&);

friend Matrix	 operator + (Matrix&, Matrix&);

friend Matrix	 operator - (Matrix&, Matrix&);

friend Matrix	 operator * (Matrix&, Matrix&);

private:

		const short	rows;	 // matrix rows

		const short	cols;	 // matrix columns

		double		*elems;	 // matrix elements

};��

Annotation

4	The constructor creates a matrix of the size specified by its arguments, all of whose elements are initialized to 0.

6	The overloaded () operator is used for accessing matrix elements. The function which overloads () may have zero or more parameters. It returns a reference to the specified element’s value.

7	The overloaded << is used for printing a matrix in tabular form.

8-10	These overloaded operators provide basic matrix operations.

14	The matrix elements are represented by a dynamic array of doubles.

The implementation of the first three member functions is as follows:

Matrix::Matrix (const short r, const short c) : rows(r), cols(c)

{

	elems = new double[rows * cols];

}

double& Matrix::operator () (const short row, const short col)

{

	static double dummy = 0.0;

	return (row >= 1 && row <= rows && col >= 1 && col <= cols)

			? elems[(row - 1)*cols + (col - 1)]

			: dummy;

}

ostream& operator << (ostream &os, Matrix &m)

{

	for (register r = 1; r <= m.rows; ++r) {

		for (int c = 1; c <= m.cols; ++c)

			os << m(r,c) << " ";

		os << '\n';

	}

	return os;

}

	As before, because Matrix::operator() must return a valid reference, a reference to a dummy static double is returned when the specified element does not exist. The following code fragment illustrates that matrix elements are lvalues:

Matrix m(2,3);

m(1,1) = 10;		m(1,2) = 20;		m(1,3) = 30;

m(2,1) = 15;		m(2,2) = 25;		m(2,3) = 35;

cout << m << '\n';

This will produce the following output:

10	20	30

15	25	35

		(

Memberwise Initialization

Consider the following definition of the overloaded + operator for Matrix:

Matrix operator + (Matrix &p, Matrix &q)

{

	Matrix m(p.rows, p.cols);

	if (p.rows == q.rows && p.cols == q.cols)

		for (register r = 1; r <= p.rows; ++r)

			for (register c = 1; c <= p.cols; ++c)

				m(r,c) = p(r,c) + q(r,c);

	return m;

}

This function returns a matrix object which is initialized to m. The initialization is handled by an internal constructor which the compiler automatically generates for Matrix:

Matrix::Matrix (const Matrix &m) : rows(m.rows), cols(m.cols)

{

	elems = m.elems;	

}

This form of initialization is called memberwise initialization because the special constructor initializes the object member by member. If the data members of the object being initialized are themselves objects of another class, then those are also memberwise initialized, etc.

	As a result of the default memberwise initialization, the elems data member of both objects will point to the same dynamically-allocated block. However, m is destroyed upon the function returning. Hence the destructor deletes the block pointed to by m.elems, leaving the returned object’s elems data member pointing to an invalid block! This ultimately leads to a runtime failure (typically a bus error). Figure 7.�seq figure BitwiseCopy�
2
� illustrates.

Figure 7.�seq figure�
2
�	The danger of the default memberwise initialization of objects with pointers.��	�EMBED MSDraw * MERGEFORMAT�����

Memberwise initialization occurs in the following situations:

�SYMBOL 183 \f "Symbol" \s 10 \h�	When defining and initializing an object in a declaration statement that uses another object as its initializer, e.g., Matrix n = m in Foo below.

�SYMBOL 183 \f "Symbol" \s 10 \h�	When passing an object argument to a function (not applicable to a reference or pointer argument), e.g., m in Foo below.

�SYMBOL 183 \f "Symbol" \s 10 \h�	When returning an object value from a function (not applicable to a reference or pointer return value), e.g., return n in Foo below.

Matrix Foo (Matrix m)	// memberwise copy argument to m

{

	Matrix n = m;		// memberwise copy m to n

	//...

	return n;			// memberwise copy n and return copy

}

	It should be obvious that default memberwise initialization is generally adequate for classes which have no pointer data members (e.g., Point). The problems caused by the default memberwise initialization of other classes can be avoided by explicitly defining the constructor in charge of memberwise initialization. For any given class X, the constructor always has the form:

X::X (const X&);

For example, for the Matrix class, this may be defined as follows:

class Matrix {

	Matrix (const Matrix&);

	//...

};

Matrix::Matrix (const Matrix &m) : rows(m.rows), cols(m.cols)

{

	int n = rows * cols;

	elems = new double[n];				// same size

	for (register i = 0; i < n; ++i)		// copy elements

		elems[i] = m.elems[i];

}

		(

Memberwise Assignment

Objects of the same class are assigned to one another by an internal overloading of the = operator which is automatically generated by the compiler. For example, to handle the assignment in

Matrix m(2,2), n(2,2);

//...

m = n;

the compiler automatically generates the following internal function:

Matrix& Matrix::operator = (const Matrix &m)

{

	rows = m.rows;

	cols = m.cols;

	elems = m.elems;

}

	This is identical in its approach to memberwise initialization and is called memberwise assignment. It suffers from exactly the same problems, which in turn can be overcome by explicitly overloading the = operator. For example, for the Matrix class, the following overloading of = would be appropriate:

Matrix& Matrix::operator = (const Matrix &m)

{

	if (rows == m.rows && cols == m.cols) { 	// must match

		int n = rows * cols;

		for (register i = 0; i < n; ++i)			// copy elements

			elems[i] = m.elems[i];

	}

	return *this;

}

	In general, for any given class X, the = operator is overloaded by the following member of X:

X& X::operator = (X&)

Operator = can only be overloaded as a member, and not globally.

		(

Overloading new and delete

Objects of different classes usually have different sizes and frequency of usage. As a result, they impose different memory requirements. Small objects, in particular, are not efficiently handled by the default versions of new and delete. Every block allocated by new carries some overhead used for housekeeping purposes. For large objects this is not significant, but for small objects the overhead may be even bigger than the block itself. In addition, having too many small blocks can severely slow down subsequent allocation and deallocation. The performance of a program that dynamically creates many small objects can be significantly improved by using a simpler memory management strategy for those objects.

	The dynamic storage management operators new and delete can be overloaded for a class, in which case they override the global definition of these operators when used for objects of that class.

	As an example, suppose we wish to overload new and delete for the Point class, so that Point objects are allocated from an array:

#include <stddef.h>

#include <iostream.h>

const int maxPoints = 512;

class Point {

public:

	//...

	void* operator new		(size_t bytes);

	void operator delete	(void *ptr, size_t bytes);

private:

	int xVal, yVal;

	static union Block {

		int	 xy[2];

		Block *next;

 }			 *blocks;		// points to our freestore

	static Block *freeList;		// free-list of linked blocks

	static int	 used;			// blocks used so far

};

The type name size_t is defined in stddef.h. New should always return a void*. The parameter of new denotes the size of the block to be allocated (in bytes). The corresponding argument is always automatically passed by the compiler. The first parameter of delete denotes the block to be deleted. The second parameter is optional and denotes the size of the allocated block. The corresponding arguments are automatically passed by the compiler.

	Since blocks, freeList and used are static they do not affect the size of a Point object (it is still two integers). These are initialized as follows:

Point::Block *Point::blocks = new Block[maxPoints];

Point::Block *Point::freeList = 0;

int 		 Point::used = 0;

	New takes the next available block from blocks and returns its address. Delete frees a block by inserting it in front of the linked-list denoted by freeList. When used reaches maxPoints, new removes and returns the first block in the linked-list, but fails (returns 0) when the linked-list is empty:

void* Point::operator new (size_t bytes)

{

	Block *res = freeList;

	return used < maxPoints

			 ? &(blocks[used++])

			 : (res == 0	? 0

							: (freeList = freeList->next, res));

}

void Point::operator delete (void *ptr, size_t bytes)

{

	((Block*) ptr)->next = freeList;

	freeList = (Block*) ptr;

}

	Point::operator new and Point::operator delete are invoked only for Point objects. Calling new with any other type as argument will invoke the global definition of new, even if the call occurs inside a member function of Point. For example:

Point *pt = new Point(1,1);		// calls Point::operator new

char *str = new char[10];		// calls ::operator new

delete pt;						// calls Point::operator delete

delete str;						// calls ::operator delete

Even when new and delete are overloaded for a class, global new and delete are used when creating and destroying object arrays:

Point *points = new Point[5];	// calls ::operator new

//...

delete [] points;				// calls ::operator delete

	The functions which overload new and delete for a class are always assumed by the compiler to be static, which means that they will not have access to the this pointer and therefore the nonstatic class members. This is because when these operators are invoked for an object of the class, the object does not exist: new is invoked before the object is constructed, and delete is called after it has been destroyed.

		(

Overloading ->, *, and &

It is possible to divert the flow of control to a user-defined function before a pointer to an object is dereferenced using -> or *, or before the address of an object is obtained using &. This can be used to do some extra pointer processing, and is facilitated by overloading unary operators ->, *, and &.

	For classes that do not overload ->, this operator is always binary: the left operand is a pointer to a class object and the right operand is a class member name. When the left operand of -> is an object or reference of type X (but not pointer), X is expected to have overloaded -> as unary. In this case, -> is first applied to the left operand to produce a result p. If p is a pointer to a class Y then p is used as the left operand of binary -> and the right operand is expected to be a member of Y. Otherwise, p is used as the left operand of unary -> and the whole procedure is repeated for class Y. Consider the following classes that overload ->:

class A {

	//...

	B&	operator -> (void);

};

class B {

	//...

	Point* operator -> (void);

};

The effect of applying -> to an object of type A

A obj;

int i = obj->xVal;

is the successive application of overloaded -> in A and B:

int i = (B::operator->(A::operator->(obj)))->xVal;

In other words, A::operator-> is applied to obj to give p, B::operator-> is applied to p to give q, and since q is a pointer to Point, the final result is q->xVal.

	Unary operators * and & can also be overloaded so that the semantic correspondence between ->, *, and & is preserved.

	As an example, consider a library system which represents a book record as a raw string of the following format:

"%Aauthor\0%Ttitle\0%Ppublisher\0%Ccity\0%Vvolume\0%Yyear\0\n"

Each field starts with a field specifier (e.g., %A specifies an author) and ends with a null character (i.e., \0). The fields can appear in any order. Also, some fields may be missing from a record, in which case a default value must be used.

	For efficiency reasons we may want to keep the data in this format but use the following structure whenever we need to access the fields of a record:

struct Book {

	char	*raw;		// raw format (kept for reference)

	char	*author;

	char	*title;

	char	*publisher;

	char	*city;

	short	vol;

	short	year;

};

The default field values are denoted by a global Book variable:

Book defBook = {

	"raw", "Author?", "Title?", "Publisher?", "City?", 0, 0

};

	We now define a class for representing raw records, and overload the unary pointer operators to map a raw record to a Book structure whenever necessary.

#include <iostream.h>

#include <stdlib.h>			// needed for atoi() below

int const cacheSize = 10;

class RawBook {

public:

			RawBook (char *str)		{ data = str; }

	Book*	operator -> (void);

	Book&	operator * (void);

	Book*	operator & (void);

private:

	Book*	RawToBook (void);

	char	*data;

	static	Book *cache;		// cache memory

	static	short curr;			// current record in cache

	static	short used;			// number of used cache records

};

	To reduce the frequency of mappings from RawBook to Book, we have used a simple cache memory of 10 records. The corresponding static members are initialized as follows:

Book	*RawBook::cache = new Book[cacheSize];

short	RawBook::curr = 0;

short	RawBook::used = 0;

	The private member function RawToBook searches the cache for a RawBook and returns a pointer to its corresponding Book structure. If the book is not in the cache, RawToBook loads the book at the current position in the cache:

Book* RawBook::RawToBook (void)

{

	char *str = data;

	for (register i = 0; i < used; ++i)	// search cache

		if (data == cache[i].raw)

			return cache + i;

	curr = used < cacheSize ? used++		// update curr and used

			 		: (curr < 9 ? ++curr : 0);

	Book *bk = cache + curr;				// the book

	*bk = defBook;						// set default values

	bk->raw = data;

	for (;;) {

		while (*str++ != '%')			// skip to next specifier

			;

		switch (*str++) {				// get a field

			case 'A': bk->author = str; break;

			case 'T': bk->title = str; break;

			case 'P': bk->publisher = str; break;

			case 'C': bk->city = str; break;

			case 'V': bk->vol = atoi(str); break;

			case 'Y': bk->year = atoi(str); break;

		}

		while (*str++ != '\0')			// skip till end of field

			;

		if (*str == '\n') break;			// end of record

	}

	return bk;

}

	The overloaded operators ->, *, and & are easily defined in terms of RawToBook:

Book* RawBook::operator -> (void)	{return RawToBook(); }

Book& RawBook::operator * (void)	{return *RawToBook();}

Book* RawBook::operator & (void)	{return RawToBook(); }

The identical definitions for -> and & should not be surprising since -> is unary in this context and semantically equivalent to &.

	The following test case demonstrates that the operators behave as expected. It sets up two book records and prints each using different operators.

main ()

{

	RawBook r1("%AA. Peters\0%TBlue Earth\0%PPhedra\0%CSydney\0%

				Y1981\0\n");

	RawBook r2("%TPregnancy\0%AF. Jackson\0%Y1987\0%PMiles\0\n");

	cout << r1->author << ", " << r1->title << ", "

	 << r1->publisher << ", " << r1->city << ", "

		 << (*r1).vol << ", " << (*r1).year << '\n';

	Book *bp = &r2;		 // note use of &

	cout << bp->author << ", " << bp->title << ", "

	 << bp->publisher << ", " << bp->city << ", "

	 << bp->vol << ", " << bp->year << '\n';

}

It will produce the following output:

A. Peters, Blue Earth, Phedra, Sydney, 0, 1981

F. Jackson, Pregnancy, Miles, City?, 0, 1987

		(

Overloading ++ and --

The auto increment and auto decrement operators can be overloaded in both prefix and postfix form. To distinguish between the two, the postfix version is specified to take an extra integer argument. For example, the prefix and postfix versions of ++ may be overloaded for the Binary class as follows:

class Binary {

	//...

	friend	Binary	operator ++	 (Binary&);			// prefix

	friend	Binary	operator ++	 (Binary&, int);		// postfix

};

	Although we have chosen to define these as global friend functions, they can also be defined as member functions. Both are easily defined in terms of the + operator defined earlier:

Binary operator ++ (Binary &n)			// prefix

{

	return n = n + Binary(1);

}

Binary operator ++ (Binary &n, int)		// postfix

{

	Binary m = n;

	n = n + Binary(1);

	return m;

}

Note that we have simply ignored the extra parameter of the postfix version. When this operator is used, the compiler automatically supplies a default argument for it.

	The following code fragment exercises both versions of the operator:

Binary n1 = "01011";

Binary n2 = "11010";

cout << ++n1 << '\n';

cout << n2++ << '\n';

cout << n2 << '\n';

It will produce the following output:

0000000000001100

0000000000011010

0000000000011011

	The prefix and postfix versions of -- may be overloaded in exactly the same way.

		(

Exercises

7.�seq exercise�
1
�	Write overloaded versions of a Max function which compares two integers, two reals, or two strings, and returns the ‘larger’ one.

7.�seq exercise�
2
�	Overload the following two operators for the Set class:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator - which gives the difference of two sets (e.g. s - t gives a set consisting of those elements of s which are not in t).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator <= which checks if a set is contained by another (e.g., s <= t is true if all the elements of s are also in t).

7.�seq exercise�
3
�	Overload the following two operators for the Binary class:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator - which gives the difference of two binary values. For simplicity, assume that the first operand is always greater than the second operand.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator [] which indexes a bit by its position and returns its value as a 0 or 1 integer.

7.�seq exercise�
4
�	Sparse matrices are used in a number of numerical methods (e.g., finite element analysis). A sparse matrix is one which has the great majority of its elements set to zero. In practice, sparse matrices of sizes up to 500 (500 are not uncommon. On a machine which uses a 64-bit representation for reals, storing such a matrix as an array would require 2 megabytes of storage. A more economic representation would record only nonzero elements together with their positions in the matrix. Define a SparseMatrix class which uses a linked-list to record only nonzero elements, and overload the +, -, and * operators for it. Also define an appropriate memberwise initialization constructor and memberwise assignment operator for the class.

7.�seq exercise�
5
�	Complete the implementation of the following String class. Note that two versions of the constructor and = are required, one for initializing/assigning to a String using a char*, and one for memberwise initialization/assignment. Operator [] should index a string character using its position. Operator + should concatenate two strings.

class String {

public:

				String		(const char*);

				String		(const String&);

				String		(const short);

				~String		(void);

	String&	operator =	(const char*);

	String&	operator =	(const String&);

	char&		operator []	(const short);

	int		Length		(void)		{return(len);}

friend	String	 operator +	(const String&, const String&);

friend	ostream& operator <<	(ostream&, String&);

private:

	char		*chars; // string characters

	short		len;		// length of string

};

7.�seq exercise�
6
�	A bit vector is a vector with binary elements, that is, each element is either a 0 or a 1. Small bit vectors are conveniently represented by unsigned integers. For example, an unsigned char can represent a bit vector of 8 elements. Larger bit vectors can be defined as arrays of such smaller bit vectors. Complete the implementation of the Bitvec class, as defined below. It should allow bit vectors of any size to be created and manipulated using the associated operators.

enum Bool {false, true};

typedef unsigned char uchar;

class BitVec {

public:

			 BitVec			(const short dim);

			 BitVec			(const char* bits);

			 BitVec			(const BitVec&);

			 ~BitVec		(void)			{ delete vec; }

	BitVec& operator =		(const BitVec&);

	BitVec& operator &=	(const BitVec&);

	BitVec& operator |=	(const BitVec&);

	BitVec& operator ^=	(const BitVec&);

	BitVec& operator <<=	(const short);

	BitVec& operator >>=	(const short);

	int	 operator [] 	(const short idx);

	void	 Set			(const short idx);

	void	 Reset			(const short idx);

	BitVec operator ~		(void);

	BitVec operator &		(const BitVec&);

	BitVec operator |		(const BitVec&);

	BitVec operator ^		(const BitVec&);

	BitVec operator <<	(const short n);

	BitVec operator >>	(const short n);

	Bool	 operator ==	(const BitVec&);

	Bool	 operator !=		(const BitVec&);

friend	ostream& operator << (ostream&, BitVec&);

private:

	uchar	*vec;			// vector of 8*bytes bits

	short	 bytes;			// bytes in the vector

};																	(

�PAGE�
142
�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 7: Overloading	�PAGE�
131
�

