

8.	Derived Classes

In practice, most classes are not entirely unique, but rather variations of existing ones. Consider, for example, a class named RecFile which represents a file of records, and another class named SortedRecFile which represents a sorted file of records. These two classes would have much in common. For example, they would have similar member functions such as Insert, Delete, and Find, as well as similar data members. In fact, SortedRecFile would be a specialized version of RecFile with the added property that its records are organized in sorted order. Most of the member functions in both classes would therefore be identical, while a few which depend on the fact that file is sorted would be different. For example, Find would be different in SortedRecFile because it can take advantage of the fact that the file is sorted to perform a binary search instead of the linear search performed by the Find member of RecFile.

	Given the shared properties of these two classes, it would be tedious to have to define them independently. Clearly this would lead to considerable duplication of code. The code would not only take longer to write it would also be harder to maintain: a change to any of the shared properties would have to be consistently applied to both classes.

	Object-oriented programming provides a facility called inheritance to address this problem. Under inheritance, a class can inherit the properties of an existing class. Inheritance makes it possible to define a variation of a class without redefining the new class from scratch. Shared properties are defined only once, and reused as often as desired.

	In C++, inheritance is supported by derived classes. A derived class is like an ordinary class, except that its definition is based on one or more existing classes, called base classes. A derived class can share selected properties (function as well as data members) of its base classes, but makes no changes to the definition of any of its base classes. A derived class can itself be the base class of another derived class. The inheritance relationship between the classes of a program is called a class hierarchy.

	A derived class is also called a subclass, because it becomes a subordinate of the base class in the hierarchy. Similarly, a base class may be called a superclass, because from it many other classes may be derived.

An illustrative Class

We will define two classes for the purpose of illustrating a number of programming concepts in later sections of this chapter. The two classes are defined in Listing 8.�seq listing ContactDir�
1
� and support the creation of a directory of personal contacts.

Listing 8.�seq listing�
1
�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 �#include <iostream.h>

#include <string.h>

class Contact {

public:

				Contact		(const char *name,

							 const char *address, const char *tel);

				~Contact	(void);

	const char*	Name		(void) const		{return name;}

	const char*	Address		(void) const		{return address;}

	const char*	Tel			(void) const		{return tel;}

friend ostream&	operator <<	(ostream&, Contact&);

private:

	char		*name;		// contact name

	char		*address;	// contact address

	char		*tel;		// contact telephone number

};

//---

class ContactDir {

public:

				 ContactDir	(const int maxSize);

				 ~ContactDir(void);

		void	 Insert		(const Contact&);

		void	 Delete		(const char *name);

		Contact*	 Find		(const char *name);

friend	ostream&	 operator <<(ostream&, ContactDir&);

private:

		int		Lookup		(const char *name);

		Contact	**contacts;	// list of contacts

		int		dirSize;	// current directory size

 	int		maxSize; // max directory size

};��

Annotation

3	Contact captures the details (i.e., name, address, and telephone number) of a personal contact.

18	ContactDir allows us to insert into, delete from, and search a list of personal contacts.

22	Insert inserts a new contact into the directory. This will overwrite an existing contact (if any) with identical name.

23	Delete deletes a contact (if any) whose name matches a given name.

24	Find returns a pointer to a contact (if any) whose name matches a given name.

27	Lookup returns the slot index of a contact whose name matches a given name. If none exists then Lookup returns the index of the slot where such an entry should be inserted. Lookup is defined as private because it is an auxiliary function used only by Insert, Delete, and Find.

The implementation of the member function and friends is as follows:

Contact::Contact (const char *name,

				 const char *address, const char *tel)

{

	Contact::name = new char[strlen(name) + 1];

	Contact::address = new char[strlen(address) + 1];

	Contact::tel = new char[strlen(tel) + 1];

	strcpy(Contact::name, name);

	strcpy(Contact::address, address);

	strcpy(Contact::tel, tel);

}

Contact::~Contact (void)

{

	delete name;

	delete address;

	delete tel;

}

ostream	&operator << (ostream &os, Contact &c)

{

	os << "(" << c.name << " , "

	 << c.address << " , " << c.tel << ")";

 return os;

}

ContactDir::ContactDir (const int max)

{

	typedef Contact *ContactPtr;

	dirSize = 0;

	maxSize = max;

	contacts = new ContactPtr[maxSize];

};

ContactDir::~ContactDir (void)

{

	for (register i = 0; i < dirSize; ++i)

		delete contacts[i];

	delete [] contacts;

}

void ContactDir::Insert (const Contact& c)

{

	if (dirSize < maxSize) {

		int idx = Lookup(c.Name());

		if (idx > 0 &&

			strcmp(c.Name(), contacts[idx]->Name()) == 0) {

 	delete contacts[idx];

		} else {

			for (register i = dirSize; i > idx; --i)	// shift right

				contacts[i] = contacts[i-1];

			++dirSize;

		}

		contacts[idx] = new Contact(c.Name(), c.Address(), c.Tel());

	}

}

void ContactDir::Delete (const char *name)

{

	int idx = Lookup(name);

	if (idx < dirSize) {

		delete contacts[idx];

		--dirSize;

		for (register i = idx; i < dirSize; ++i)		// shift left

			contacts[i] = contacts[i+1];

	}

}

Contact *ContactDir::Find (const char *name)

{

	int idx = Lookup(name);

	return (idx < dirSize &&

			strcmp(contacts[idx]->Name(), name) == 0)

				? contacts[idx]

				: 0;

}

int ContactDir::Lookup (const char *name)

{

	for (register i = 0; i < dirSize; ++i)

		if (strcmp(contacts[i]->Name(), name) == 0)

			return i;

	return dirSize;

}

ostream	&operator << (ostream &os, ContactDir &c)

{

	for (register i = 0; i < c.dirSize; ++i)

 	os << *(c.contacts[i]) << '\n';

 return os;

}

	The following main function exercises the ContactDir class by creating a small directory and calling the member functions:

int main (void)

{

	ContactDir	dir(10);

	dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));

	dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));

	dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));

	dir.Insert(Contact("Jack", "42 Wayne St", "663 2989"));

	dir.Insert(Contact("Fred", "2 High St", "458 2324"));

	cout << dir;

	cout << "Find Jane: " << *dir.Find("Jane") << '\n';

	dir.Delete("Jack");

	cout << "Deleted Jack\n";

	cout << dir;

	return 0;

};

When run, it will produce the following output:

(Mary , 11 South Rd , 282 1324)

(Peter , 9 Port Rd , 678 9862)

(Jane , 321 Yara Ln , 982 6252)

(Jack , 42 Wayne St , 663 2989)

(Fred , 2 High St , 458 2324)

Find Jane: (Jane , 321 Yara Ln , 982 6252)

Deleted Jack	

(Mary , 11 South Rd , 282 1324)

(Peter , 9 Port Rd , 678 9862)

(Jane , 321 Yara Ln , 982 6252)

(Fred , 2 High St , 458 2324)

		(

A Simple Derived Class

We would like to define a class called SmartDir which behaves the same as ContactDir, but also keeps track of the most recently looked-up entry. SmartDir is best defined as a derivation of ContactDir, as illustrated by Listing 8.�seq listing SmartDir�
2
�.

Listing 8.�seq listing�
2
�

1

 2

3

4

5

6

7

8 �class SmartDir : public ContactDir {

public:

		 SmartDir(const int max) : ContactDir(max) {recent = 0;}

	Contact* Recent	 (void);

	Contact* Find	 (const char *name);

private:

	char	*recent;	// the most recently looked-up name

};��

Annotation

1	A derived class header includes the base classes from which it is derived. A colon separates the two. Here, ContactDir is specified to be the base class from which SmartDir is derived. The keyword public before ContactDir specifies that ContactDir is used as a public base class.

3	SmartDir has its own constructor which in turn invokes the base class constructor in its member initialization list.

4	Recent returns a pointer to the last looked-up contact (or 0 if there is none).

5	Find is redefined so that it can record the last looked-up entry.

7	This recent pointer is set to point to the name of the last looked-up entry.

The member functions are defined as follows:

Contact* SmartDir::Recent (void)

{

	return recent == 0 ? 0 : ContactDir::Find(recent);

}

Contact* SmartDir::Find (const char *name)

{

	Contact *c = ContactDir::Find(name);

	if (c != 0)

		recent = (char*) c->Name();

 return c;

}

	Because ContactDir is a public base class of SmartDir, all the public members of ContactDir become public members of SmartDir. This means that we can invoke a member function such as Insert on a SmartDir object and this will simply be a call to ContactDir::Insert. Similarly, all the private members of ContactDir become private members of SmartDir.

	In accordance with the principles of information hiding, the private members of ContactDir will not be accessible by SmartDir. Therefore, SmartDir will be unable to access any of the data members of ContactDir as well as the private member function Lookup.

	SmartDir redefines the Find member function. This should not be confused with overloading. There are two distinct definitions of this function: ContactDir::Find and SmartDir::Find (both of which have the same signature, though they can have different signatures if desired). Invoking Find on a SmartDir object causes the latter to be invoked. As illustrated by the definition of Find in SmartDir, the former can still be invoked using its full name.

	The following code fragment illustrates that SmartDir behaves the same as ContactDir, but also keeps track of the most recently looked-up entry:

SmartDir		dir(10);

dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));

dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));

dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));

dir.Insert(Contact("Fred", "2 High St", "458 2324"));

dir.Find("Jane");

dir.Find("Peter");

cout << "Recent: " << *dir.Recent() << '\n';

This will produce the following output:

Recent: (Peter , 9 Port Rd , 678 9862)

	An object of type SmartDir contains all the data members of ContactDir as well as any additional data members introduced by SmartDir. Figure 8.�seq figure DerivedObject�
1
� illustrates the physical make up of a ContactDir and a SmartDir object.

Figure 8.�seq figure�
1
�	Base and derived class objects.��	�EMBED MSDraw * MERGEFORMAT���	(��Class Hierarchy Notation

A class hierarchy is usually illustrated using a simple graph notation. Figure 8.�seq figure ClassHierarchy1�
2
� illustrates the UML notation that we will be using in this book. Each class is represented by a box which is labeled with the class name. Inheritance between two classes is illustrated by a directed line drawn from the derived class to the base class. A line with a diamond shape at one end depicts composition (i.e., a class object is composed of one or more objects of another class). The number of objects contained by another object is depicted by a label (e.g., n).

Figure 8.�seq figure�
2
�	A simple class hierarchy��	���

	Figure 8.�seq figure ClassHierarchy1�
2
� is interpreted as follows. Contact, ContactDir, and SmartDir are all classes. A ContactDir is composed of zero or more Contact objects. SmartDir is derived from ContactDir.

		(

Constructors and Destructors

A derived class may have constructors and a destructor. Since a derived class may provide data members on top of those of its base class, the role of the constructor and destructor is to, respectively, initialize and destroy these additional members.

	When an object of a derived class is created, the base class constructor is applied to it first, followed by the derived class constructor. When the object is destroyed, the destructor of the derived class is applied first, followed by the base class destructor. In other words, constructors are applied in order of derivation and destructors are applied in the reverse order. For example, consider a class C derived from B which is in turn derived from A. Figure 8.�seq figure ConstDest�
3
� illustrates how an object c of type C is created and destroyed.

class A 				{ /* ... */ }

class B : public A	{ /* ... */ }

class C : public B	{ /* ... */ }

Figure 8.�seq figure�
3
�	Derived class object construction and destruction order.��	�EMBED MSDraw * MERGEFORMAT�����

	The constructor of a derived class whose base class constructor requires arguments should specify these in the definition of its constructor. To do this, the derived class constructor explicitly invokes the base class constructor in its member initialization list. For example, the SmartDir constructor passes its argument to the ContactDir constructor in this way:

SmartDir::SmartDir (const int max) : ContactDir(max)

{ /* ... */ }

In general, all that a derived class constructor requires is an object from the base class. In some situations, this may not even require referring to the base class constructor:

extern ContactDir cd;			// defined elsewhere

SmartDir::SmartDir (const int max) : cd

{ /* ... */ }													(

Protected Class Members

Although the private members of a base class are inherited by a derived class, they are not accessible to it. For example, SmartDir inherits all the private (and public) members of ContactDir, but is not allowed to directly refer to the private members of ContactDir. The idea is that private members should be completely hidden so that they cannot be tampered with by the class clients.

	This restriction may prove too prohibitive for classes from which other classes are likely to be derived. Denying the derived class access to the base class private members may convolute its implementation or even make it impractical to define.

	The restriction can be relaxed by defining the base class private members as protected instead. As far as the clients of a class are concerned, a protected member is the same as a private member: it cannot be accessed by the class clients. However, a protected base class member can be accessed by any class derived from it.

	For example, the private members of ContactDir can be made protected by substituting the keyword protected for private:

class ContactDir {

		//...

protected:

		int		Lookup		(const char *name);

		Contact	**contacts;	// list of contacts

		int		dirSize;	// current directory size

 	int		maxSize; // max directory size

};

As a result, Lookup and the data members of ContactDir are now accessible to SmartDir.

	The access keywords private, public, and protected can occur as many times as desired in a class definition. Each access keyword specifies the access characteristics of the members following it until the next access keyword:

class Foo {

	public:

		// public members...

	private:

		// private members...

	protected:

		// protected members...

	public:

		// more public members...

	protected:

		// more protected members...

};																(

Private, Public, and Protected Base Classes

A base class may be specified to be private, public, or protected. Unless so specified, the base class is assumed to be private:

class A {

	private:	int x;		void Fx (void);

	public:		int y;		void Fy (void);

	protected:	int z;		void Fz (void);

};

class B : A {};				// A is a private base class of B

class C : private A {};		// A is a private base class of C

class D : public A {};		// A is a public base class of D

class E : protected A {};	// A is a protected base class of E

The behavior of these is as follows (see Table 8.�seq table BaseClassRules�
1
� for a summary):

�SYMBOL 183 \f "Symbol" \s 10 \h�	All the members of a private base class become private members of the derived class. So x, Fx, y, Fy, z, and Fz all become private members of B and C.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The members of a public base class keep their access characteristics in the derived class. So, x and Fx becomes private members of D, y and Fy become public members of D, and z and Fz become protected members of D.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The private members of a protected base class become private members of the derived class. Whereas, the public and protected members of a protected base class become protected members of the derived class. So, x and Fx become private members of E, and y, Fy, z, and Fz become protected members of E.

Table 8.�seq table�
1
�	Base class access inheritance rules.

Base Class�Private Derived�Public Derived�Protected Derived��Private Member�private�private�private��Public Member�private�public�protected��Protected Member�private�protected�protected��

	It is also possible to individually exempt a base class member from the access changes specified by a derived class, so that it retains its original access characteristics. To do this, the exempted member is fully named in the derived class under its original access characteristic. For example:

class C : private A {

	//...

public:		A::Fy;		// makes Fy a public member of C

protected:	A::z;		// makes z a protected member of C

};																(

Virtual Functions

Consider another variation of the ContactDir class, called SortedDir, which ensures that new contacts are inserted in such a manner that the list remains sorted at all times. The obvious advantage of this is that the search speed can be improved by using the binary search algorithm instead of linear search.

	The actual search is performed by the Lookup member function. Therefore we need to redefine this function in SortedDir so that it uses the binary search algorithm. However, all the other member functions refer to ContactDir::Lookup. We can also redefine these so that they refer to SortedDir::Lookup instead. If we follow this approach, the value of inheritance becomes rather questionable, because we would have practically redefined the whole class.

	What we really want to do is to find a way of expressing this: Lookup should be tied to the type of the object which invokes it. If the object is of type SortedDir then invoking Lookup (from anywhere, even from within the member functions of ContactDir) should mean SortedDir::Lookup. Similarly, if the object is of type ContactDir then calling Lookup (from anywhere) should mean ContactDir::Lookup.

	This can be achieved through the dynamic binding of Lookup: the decision as to which version of Lookup to call is made at runtime depending on the type of the object.

	In C++, dynamic binding is supported by virtual member functions. A member function is declared as virtual by inserting the keyword virtual before its prototype in the base class. Any member function, including constructors and destructors, can be declared as virtual. Lookup should be declared as virtual in ContactDir:

class ContactDir {

	//...

protected:

	virtual	int	Lookup (const char *name);

	//...

};

	Only nonstatic member functions can be declared as virtual. A virtual function redefined in a derived class must have exactly the same prototype as the one in the base class. Virtual functions can be overloaded like other member functions.

	Listing 8.�seq listing SortedDir�
3
� shows the definition of SortedDir as a derived class of ContactDir.

Listing 8.�seq listing�
3
�

1

 2

3

4

5

6 �class SortedDir : public ContactDir {

public:

				SortedDir	(const int max) : ContactDir(max) {}

protected:

	virtual	int	Lookup		(const char *name);

};��

Annotation

3	The constructor simply invokes the base class constructor.

5	Lookup is again declared as virtual to enable any class derived from SortedDir to redefine it.

The new definition of Lookup is as follows:

int SortedDir::Lookup (const char *name)

{

	int bot = 0;

	int top = dirSize - 1;

	int pos = 0;

	int	mid, cmp;

	while (bot <= top) {

		mid = (bot + top) / 2;

		if ((cmp = strcmp(name, contacts[mid]->Name())) == 0)

			return mid;				// return item index

		else if (cmp < 0)

			pos = top = mid - 1;		// restrict search to lower half

		else

			pos = bot = mid + 1;		// restrict search to upper half

	}

	return pos < 0 ? 0 : pos;		// expected slot

}

The following code fragment illustrates that SortedDir::Lookup is called by ContactDir::Insert when invoked via a SortedDir object:

SortedDir	dir(10);

dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));

dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));

dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));

dir.Insert(Contact("Jack", "42 Wayne St", "663 2989"));

dir.Insert(Contact("Fred", "2 High St", "458 2324"));

cout << dir;

It will produce the following output:

(Fred , 2 High St , 458 2324)

(Jack , 42 Wayne St , 663 2989)

(Jane , 321 Yara Ln , 982 6252)

(Mary , 11 South Rd , 282 1324)

(Peter , 9 Port Rd , 678 9862)									(

Multiple Inheritance

The derived classes encountered so far in this chapter represent single inheritance, because each inherits its attributes from a single base class. Alternatively, a derived class may have multiple base classes. This is referred to as multiple inheritance.

	For example, suppose we have defined two classes for, respectively, representing lists of options and bitmapped windows:

class OptionList {

public:

	OptionList	(int n);

	~OptionList	(void);

	//...

};

class Window {

public:

	Window	(Rect &bounds);

	~Window	(void);

 //...

};

A menu is a list of options displayed within its own window. It therefore makes sense to define Menu by deriving it from OptionList and Window:

class Menu : public OptionList, public Window {

public:

	Menu	(int n, Rect &bounds);

 ~Menu	(void);

	//...

};

	Under multiple inheritance, a derived class inherits all of the members of its base classes. As before, each of the base classes may be private, public, or protected. The same base member access principles apply. Figure 8.�seq figure TableClassHierarchy�
4
� illustrates the class hierarchy for Menu.

Figure 8.�seq figure�
4
�	The Menu class hierarchy��	���

	Since the base classes of Menu have constructors that take arguments, the constructor for the derived class should invoke these in its member initialization list:

Menu::Menu (int n, Rect &bounds) : OptionList(n), Window(bounds)

{

	//...

}

The order in which the base class constructors are invoked is the same as the order in which they are specified in the derived class header (not the order in which they appear in the derived class constructor’s member initialization list). For Menu, for example, the constructor for OptionList is invoked before the constructor for Window, even if we change their order in the constructor:

Menu::Menu (int n, Rect &bounds) : Window(bounds), OptionList(n)

{

	//...

}

The destructors are applied in the reverse order: ~Menu, followed by ~Window, followed by ~OptionList.

	The obvious implementation of a derived class object is to contain one object from each of its base classes. Figure 8.�seq figure DerivedObject2�
5
� illustrates the relationship between a Menu object and its base class objects.

Figure 8.�seq figure�
5
�	Base and derived class objects.��	�EMBED MSDraw * MERGEFORMAT�����

	In general, a derived class may have any number of base classes, all of which must be distinct:

class X : A, B, A {		// illegal: A appears twice

	//...

};

		(

Ambiguity

Multiple inheritance further complicates the rules for referring to the members of a class. For example, suppose that both OptionList and Window have a member function called Highlight for highlighting a specific part of either object type:

class OptionList {

public:

	//...

	void Highlight (int part);

};

class Window {

public:

	//...

	void Highlight (int part);

};

The derived class Menu will inherit both these functions. As a result, the call

m.Highlight(0);

(where m is a Menu object) is ambiguous and will not compile, because it is not clear whether it refers to OptionList::Highlight or Window::Highlight. The ambiguity is resolved by making the call explicit:

m.Window::Highlight(0);

Alternatively, we can define a Highlight member for Menu which in turn calls the Highlight members of the base classes:

class Menu : public OptionList, public Window {

public:

	//...

	void Highlight (int part);

};

void Menu::Highlight (int part)

{

	OptionList::Highlight(part);

	Window::Highlight(part);

}

		(

Type Conversion

For any derived class there is an implicit type conversion from the derived class to any of its public base classes. This can be used for converting a derived class object to a base class object, be it a proper object, a reference, or a pointer:

Menu	menu(n, bounds);

Window	win = menu;

Window	&wRef = menu;

Window	*wPtr = &menu;

Such conversions are safe because the derived class object always contains all of its base class objects. The first assignment, for example, causes the Window component of menu to be assigned to win.

	By contrast, there is no implicit conversion from a base class to a derived class. The reason being that such a conversion is potentially dangerous due to the fact that the derived class object may have data members not present in the base class object. The extra data members will therefore end up with unpredictable values. All such conversions must be explicitly cast to confirm the programmer’s intention:

Menu	&mRef = (Menu&) win;			// caution!

Menu	*mPtr = (Menu*) &win;		// caution!

A base class object cannot be assigned to a derived class object unless there is a type conversion constructor in the derived class defined for this purpose. For example, given

class Menu : public OptionList, public Window {

public:

	//...

	Menu (Window&);

};

the following would be valid and would use the constructor to convert win to a Menu object before assigning:

menu = win;		// invokes Menu::Menu(Window&)

		(

Inheritance and Class Object Members

Consider the problem of recording the average time required for a message to be transmitted from one machine to another in a long-haul network. This can be represented as a table, as illustrated by Table 8.�seq table LongHaulNetwork�
2
�.

Table 8.�seq table�
2
�	Message transmission time (in seconds).

�Sydney�Melbourne�Perth��Sydney�0.00�3.55�12.45��Melbourne�2.34�0.00�10.31��Perth�15.36�9.32�0.00��

	The row and column indices for this table are strings rather than integers, so the Matrix class (Chapter 7) will not be adequate for representing the table. We need a way of mapping strings to indices. This is already supported by the AssocVec class (Chapter 7). As shown in Listing 8.�seq listing Table1�
4
�, Table1 can be defined as a derived class of Matrix and AssocVec.

Listing 8.�seq listing�
4
�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14 �class Table1 : Matrix, AssocVec {

public:

			Table1 		(const short entries)

							: Matrix(entries, entries),

				 			 AssocVec(entries)		{}

	double& operator () (const char *src, const char *dest);

};

double& Table1::operator () (const char *src, const char *dest)

{

	return	this->Matrix::operator()(

					this->AssocVec::operator[](src),

					this->AssocVec::operator[](dest)

);

}��

Here is a simple test of the class

Table tab(3);

tab("Sydney","Perth") = 12.45;

cout << "Sydney -> Perth = " << tab("Sydney","Perth") << '\n';

which produces the following output:

Sydney -> Perth = 12.45										

	Another way of defining this class is to derive it from Matrix and include an AssocVec object as a data member (see Listing 8.�seq listing Table2�
5
�).

Listing 8.�seq listing�
5
�

1

 2

3

4

5

6

7

8

9

10

11

12

13 �class Table2 : Matrix {

public:

			Table2		(const short entries)

							: Matrix(entries, entries),

				 			 index(entries)			{}

	double& operator () (const char *src, const char *dest);

private:

	AssocVec index;		// row and column index

};

double& Table2::operator () (const char *src, const char *dest)

{

	return	this->Matrix::operator()(index[src], index[dest]);

}��

	The inevitable question is: which one is a better solution, Table1 or Table2? The answer lies in the relationship of table to matrix and associative vector:

�SYMBOL 183 \f "Symbol" \s 10 \h�	A table is a form of matrix.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A table is not an associative vector, but rather uses an associative vector to manage the association of its row and column labels with positional indexes.

In general, an is-a relationship is best realized using inheritance, because it implies that the properties of one object are shared by another object. On the other hand, a uses-a (or has-a) relationship is best realized using composition, because it implies that one object is contained by another object. Table2 is therefore the preferred solution.

	It is worth considering which of the two versions of table better lends itself to generalization. One obvious generalization is to remove the restriction that the table should be square, and to allow the rows and columns to have different labels. To do this, we need to provide two sets of indexes: one for rows and one for columns. Hence we need two associative vectors. It is arguably easier to expand Table2 to do this rather than modify Table1 (see Listing 8.�seq listing Table3�
6
�).

	Figure 8.�seq figure TableVariations�
6
� shows the class hierarchies for the three variations of table.

Figure 8.�seq figure�
6
�	Variations of table.�����

Listing 8.�seq listing�
6
�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14

15 �class Table3 : Matrix {

public:

			Table3		(const short rows, const short cols)

							: Matrix(rows,cols),

							 rowIdx(rows),

							 colIdx(cols)		{}

	double& operator () (const char *src, const char *dest);

private:

	AssocVec rowIdx;		// row index

	AssocVec colIdx;		// column index

};

double& Table3::operator () (const char *src, const char *dest)

{

	return this->Matrix::operator()(rowIdx[src], colIdx[dest]);

}��

	For a derived class which also has class object data members, the order of object construction is as follows. First the base class constructors are invoked in the order in which they appear in the derived class header. Then the class object data members are initialized by their constructors being invoked in the same order in which they are declared in the class. Finally, the derived class constructor is invoked. As before, the derived class object is destroyed in the reverse order of construction.

	Figure 8.�seq figure Table3ConsDest�
7
� illustrates this for a Table3 object.

Figure 8.�seq figure�
7
�	Table3 object construction and destruction order.��	�EMBED MSDraw * MERGEFORMAT�����

		(

Virtual Base Classes

Recall the Menu class and suppose that its two base classes are also multiply derived:

class OptionList : public Widget, List				{ /*...*/ };

class Window : public Widget, Port				{ /*...*/ };

class Menu : public OptionList, public Window	{ /*...*/ };

	Since Widget is a base class for both OptionList and Window, each menu object will have two widget objects (see Figure 8.�seq figure VirtualBase�
8
�a). This is not desirable (because a menu is considered a single widget) and may lead to ambiguity. For example, when applying a widget member function to a menu object, it is not clear as to which of the two widget objects it should be applied. The problem is overcome by making Widget a virtual base class of OptionList and Window. A base class is made virtual by placing the keyword virtual before its name in the derived class header:

class OptionList : virtual public Widget, List		{ /*...*/ };

class Window : virtual public Widget, Port		{ /*...*/ };

This ensures that a Menu object will contain exactly one Widget object. In other words, OptionList and Window will share the same Widget object.

	An object of a class which is derived from a virtual base class does not directly contain the latter’s object, but rather a pointer to it (see Figure 8.�seq figure VirtualBase�
8
�b and 8.�seq figure VirtualBase�
8
�c). This enables multiple occurrences of a virtual class in a hierarchy to be collapsed into one (see Figure 8.�seq figure VirtualBase�
8
�d).

	If in a class hierarchy some instances of a base class X are declared as virtual and other instances as nonvirtual, then the derived class object will contain an X object for each nonvirtual instance of X, and a single X object for all virtual occurrences of X.

	A virtual base class object is initialized, not necessarily by its immediate derived class, but by the derived class farthest down the class hierarchy. This rule ensures that the virtual base class object is initialized only once. For example, in a menu object, the widget object is initialized by the Menu constructor (which overrides the invocation of the Widget constructor by OptionList or Window):

Menu::Menu (int n, Rect &bounds) :	Widget(bounds),

									OptionList(n),

									Window(bounds)

{ //... }

Regardless of where it appears in a class hierarchy, a virtual base class object is always constructed before nonvirtual objects in the same hierarchy.

Figure 8.�seq figure�
8
�	Nonvirtual and virtual base classes.���EMBED MSDraw * mergeformat�����

	If in a class hierarchy a virtual base is declared with conflicting access characteristics (i.e., any combination of private, protected, and public), then the most accessible will dominate. For example, if Widget were declared a private base class of OptionList, and a public base class of Window, then it would still be a public base class of Menu.

		(

Overloaded Operators

Except for the assignment operator, a derived class inherits all the overloaded operators of its base classes. An operator overloaded by the derived class itself hides the overloading of the same operator by the base classes (in exactly the same way member functions of a derived class hide member functions of base classes).

	Memberwise initialization and assignment (see Chapter 7) extend to derived classes. For any given class Y derived from X, memberwise initialization is handled by an automatically-generated (or user-defined) constructor of the form:

Y::Y (const Y&);

Similarly, memberwise assignment is handled by an automatically-generated (or user-defined) overloading of the = operator:

Y& Y::operator = (Y&)

Memberwise initialization (or assignment) of a derived class object involves the memberwise initialization (or assignment) of its base classes as well as its class object members.

	Special care is needed when a derived class relies on the overloading of new and delete operators for its base class. For example, recall the overloading of these two operators for the Point class in Chapter 7, and suppose that we wish to use them for a derived class:

class Point3D : public Point {

public:

	//...

private:

	int depth;

};

Because the implementation of Point::operator new assumes that the requested block should be the size of a Point object, its inheritance by the Point3D class leads to a problem: it fails to account for the extra space needed by the data member of the latter (i.e., depth).

	To avoid this problem, an overloading of new should attempt to allocate the exact amount of storage specified by its size parameter, rather than assuming a predefined size. Similarly, an overloading of delete should note the size specified by its second parameter and attempt to release exactly those many bytes.

		(

Exercises

8.�seq exercise�
1
�	Consider a Year class which divides the days in a year into work days and off days. Because each day has a binary value, Year is easily derived from BitVec:

enum Month {

	Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

};

class Year : public BitVec {

public:

			Year	(const short year);

	void	WorkDay	(const short day);	// set day as work day

	void	OffDay	(const short day);	// set day as off day

	Bool	Working	(const short day);	// true if a work day

	short	Day		(const short day,	// convert date to day

					 const Month month, const short year);

protected:

	short	year;	// calendar year

};

Days are sequentially numbered from the beginning of the year, starting at 1 for January 1st. Complete the Year class by implementing its member functions.

8.�seq exercise�
2
�	Consider an educational application program which given an arbitrary set of values, X = [x1, x2, ...,xn], generates a set of n linear equations whose solution is X, and then proceeds to illustrate this by solving the equations using Gaussian elimination. Derive a class named LinearEqns from Matrix and for this purpose and define the following member functions for it:

�SYMBOL 183 \f "Symbol" \s 10 \h�	A constructor which accepts X as a matrix, and a destructor.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Generate which randomly generates a system of linear equations as a matrix M. It should take a positive integer (coef) as argument and generate a set of equations, ensuring that the range of the coefficients does not exceed coef. Use a random number generator (e.g., random under UNIX) to generate the coefficients. To ensure that X is a solution for the equations denoted by M, the last element of a row k is denoted by:

			�

�SYMBOL 183 \f "Symbol" \s 10 \h�	Solve which uses Gaussian elimination to solve the equations generated by Generate. Solve should the output operator of Matrix to display the augmented matrix each time the elements below a pivot are eliminated.

8.�seq exercise�
3
�	Enumerations introduced by an enum declaration are small subsets of integers. In certain applications we may need to construct sets of such enumerations. For example, in a parser, each parsing routine may be passed a set of symbols that should not be skipped when the parser attempts to recover from a syntax error. These symbols are typically the reserved words of the language:

enum Reserved {classSym, privateSym, publicSym, protectedSym,

		 friendSym, ifSym, elseSym, switchSym,...};

	Given that there may be at most n elements in a set (n being a small number) the set can be efficiently represented as a bit vector of n elements. Derive a class named EnumSet from BitVec to facilitate this. EnumSet should overload the following operators:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator + for set union.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator - for set difference.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator * for set intersection.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operator % for set membership.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operators <= and >= for testing if a set is a subset of another.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Operators >> and << for, respectively, adding an element to and removing an element from a set.

8.�seq exercise�
4
�	An abstract class is a class which is never used directly but provides a skeleton for other classes to be derived from it. Typically, all the member functions of an abstract are virtual and have dummy implementations. The following is a simple example of an abstract class:

class Database {

public:

	virtual	void	Insert	(Key, Data)		{}

	virtual	void	Delete	(Key)			{}

	virtual	Data	Search	(Key)			{return 0;}

};

It provides a skeleton for a database-like classes. Examples of the kind of classes which could be derived from database include: linked-list, binary tree, and B-tree. First derive a B-tree class from Database and then derive a B*-tree from B-tree:

class BTree : public Database { /*...*/ };

class BStar : public BTree { /*...*/ };

See Comer (1979) for a description of B-tree and B*-tree. For the purpose of this exercise, use the built-in type int for Key and double for Data.

		(

�PAGE�
170
�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 8: Derived Classes	�PAGE�
167
�

