

9.	Templates













This chapter describes the template facility of C++ for defining functions and classes. Templates facilitate the generic definition of functions and classes so that they are not tied to specific implementation types. They are invaluable in that they dispense with the burden of redefining a function or class so that it will work with yet another data type.

	A function template defines an algorithm. An algorithm is a generic recipe for accomplishing a task, independent of the particular data types used for its implementation. For example, the binary search algorithm operates on a sorted array of items, whose exact type is irrelevant to the algorithm. Binary search can therefore be defined as a function template with a type parameter which denotes the type of the array items. This template then becomes a blueprint for generating executable functions by substituting a concrete type for the type parameter. This process is called instantiation and its outcome is a conventional function.

	A class template defines a parameterized type. A parameterized type is a data type defined in terms of other data types, one or more of which are unspecified. Most data types can be defined independently of the concrete data types used in their implementation. For example, the stack data type involves a set of items whose exact type is irrelevant to the concept of stack. Stack can therefore be defined as a class template with a type parameter which specifies the type of the items to be stored on the stack. This template can then be instantiated, by substituting a concrete type for the type parameter, to generate executable stack classes.

	Templates provide direct support for writing reusable code. This in turn makes them an ideal tool for defining generic libraries.

 	We will present a few simple examples to illustrate how templates are defined, instantiated, and specialized. We will describe the use of nontype parameters in class templates, and discuss the role of class members, friends, and derivations in the context of class templates.



Function Template Definition

A function template definition (or declaration) is always preceded by a template clause, which consists of the keyword template and a list of one or more type parameters. For example,



template <class T>	T Max (T, T);



declares a function template named Max for returning the maximum of two objects. T denotes an unspecified (generic) type. Max is specified to compare two objects of the same type and return the larger of the two. Both arguments and the return value are therefore of the same type T. The definition of a function template is very similar to a normal function, except that the specified type parameters can be referred to within the definition. The definition of Max is shown in Listing 9.�seq listing MaxDefinition�1�.



Listing 9.�seq listing�1�

1 

 2 

3 

4

5  �template <class T>

T Max (T val1, T val2)

{

	return val1 > val2 ? val1 : val2;

}��

	A type parameter is an arbitrary identifier whose scope is limited to the function itself. Type parameters always appear inside <>. Each type parameter consists of the keyword class followed by the parameter name. When multiple type parameters are used, they should be separated by commas. Each specified type parameter must actually be referred to in the function prototype. The keyword class cannot be factored out:



template <class T1, class T2, class T3>

	T3 Relation(T1, T2);			// ok



template <class T1, class T2>

	int Compare (T1, T1);		// illegal! T2 not used.



template <class T1, T2>			// illegal! class missing for T2

	int Compare (T1, T2);



For static, inline, and extern functions, the respective keyword must appear after the template clause, and not before it:



template <class T>

	inline T Max (T val1, T val2);	// ok



inline template <class T>			// illegal! inline misplaced

	T Max (T val1, T val2);

		(

Function Template Instantiation

A function template represents an algorithm from which executable implementations of the function can be generated by binding its type parameters to concrete (built-in or user-defined) types. For example, given the earlier template definition of Max, the code fragment



cout << Max(19, 5) << ' '

	 << Max(10.5, 20.3) << ' '

	 << Max('a','b') << '\n';



will produce the following output:



19 20.3 b



	In the first call to Max, both arguments are integers, hence T is bound to int. In the second call, both arguments are reals, hence T is bound to double. In the final call, both arguments are characters, hence T is bound to char. A total of three functions are therefore generated by the compiler to handle these cases:



int		Max (int, int);

double	Max (double, double);

char	Max (char, char);



	When the compiler encounters a call to a template function, it attempts to infer the concrete type to be substituted for each type parameter by examining the type of the arguments in the call. The compiler does not attempt any implicit type conversions to ensure a match. As a result, it cannot resolve the binding of the same type parameter to reasonable but unidentical types. For example:



Max(10, 12.6);



would be considered an error because it requires the first argument to be converted to double so that both arguments can match T. The same restriction even applies to the ordinary parameters of a function template. For example, consider the alternative definition of Max in Listing 9.�seq listing MaxOfArray�2� for finding the maximum value in an array of values. The ordinary parameter n denotes the number of array elements. A matching argument for this parameter must be of type int:



unsigned nValues = 4;

double	 values[] = {10.3, 19.5, 20.6, 3.5};

Max(values, 4);			// ok

Max(values, nValues);	// illegal! nValues does not match int



Listing 9.�seq listing�2�

1 

 2 

3 

4

5

6

7

8

9  �template <class T>

T Max (T *vals, int n)

{

	T max = vals[0];

	for (register i = 1; i < n; ++i)

		if (vals[i] > max)

			max = vals[i];

	return max;

}��

The obvious solution to both problems is to use explicit type conversion:



Max(double(10), 12.6);

Max(values, int(nValues));



	As illustrated by Listings 9.�seq listing MaxDefinition�1� and 9.�seq listing MaxOfArray�2�, function templates can be overloaded in exactly the same way as normal functions. The same rule applies: each overloaded definition must have a unique signature.

	Both definitions of Max assume that the > operator is defined for the type substituted in an instantiation. When this is not the case, the compiler flags it as an error:



Point pt1(10,20), pt2(20,30);

Max(pt1, pt2);			// illegal: pt1 > pt2 undefined



For some other types, the operator may be defined but not produce the desired effect. For example, using Max to compare two strings will result in their pointer values being compared, not their character sequences:



Max("Day", "Night");		// caution: "Day" > "Night" undesirable



This case can be correctly handled through a specialization of the function, which involves defining an instance of the function to exactly match the proposed argument types:



#include <string.h>

char* Max (char *str1, char *str2)		// specialization of Max

{

	return strcmp(str1, str2) > 0 ? str1 : str2;

}



Given this specialization, the above call now matches this function and will not result in an instance of the function template to be instantiated for char*.

		(

Example: Binary Search

Recall the binary search algorithm implemented in Chapter 5. Binary search is better defined as a function template so that it can be used for searching arrays of any type. Listing 9.�seq listing BinSearch�3� provides a template definition.



Listing 9.�seq listing�3�

1 

2 

3 

4 

5 

6 



7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17   �template <class Type>

int BinSearch (Type &item, Type *table, int n)

{

	int bot = 0;

	int top = n - 1;

	int mid, cmp;



	while (bot <= top) {

		mid = (bot + top) / 2;

		if (item == table[mid])

			return mid;				// return item index

		else if (item < table[mid])

			top = mid - 1;			// restrict search to lower half

		else

			bot = mid + 1;			// restrict search to upper half

	}

	return -1;						// not found

}��

Annotation

3	This is the template clause. It introduces Type as a type parameter, the scope for which is the entire definition of the BinSearch function.

4	BinSearch searches for an item denoted by item in the sorted array denoted by table, the dimension for which is denoted by n.

9	This line assumes that the operator == is defined for the type to which Type is bound in an instantiation.

11	This line assumes that the operator < is defined for the type to which Type is bound in an instantiation.



	Instantiating BinSearch with Type bound to a built-in type such as int has the desired effect. For example,



int nums[] = {10, 12, 30, 38, 52, 100};

cout << BinSearch(52, nums, 6) << '\n';



produces the expected output:



4



	Now let us instantiate BinSearch for a user-defined type such as RawBook (see Chapter 7). First, we need to ensure that the comparison operators are defined for our user-defined type:



class RawBook {

public:

	//...

    int		operator <	(RawBook &b)	{return Compare(b) < 0;}

	int		operator >	(RawBook &b)	{return Compare(b) > 0;}

	int		operator ==	(RawBook &b)	{return Compare(b) == 0;}

private:

    int		Compare		(RawBook&);

	//...

};



int RawBook::Compare (RawBook &b)

{

	int	cmp;

	Book *b1 = RawToBook();

    Book *b2 = b.RawToBook();

	if ((cmp = strcmp(b1->title, b2->title)) == 0)

		if ((cmp = strcmp(b1->author, b2->author)) == 0)

			return strcmp(b1->publisher, b2->publisher);

    return cmp;

}



All are defined in terms of the private member function Compare which compares two books by giving priority to their titles, then authors, and finally publishers. The code fragment



RawBook books[] = {

   RawBook("%APeters\0%TBlue Earth\0%PPhedra\0%CSydney\0%Y1981\0\n"),

   RawBook("%TPregnancy\0%AJackson\0%Y1987\0%PMiles\0\n"),

   RawBook("%TZoro\0%ASmiths\0%Y1988\0%PMiles\0\n")

};

cout << BinSearch(RawBook("%TPregnancy\0%AJackson\0%PMiles\0\n"), 

					books, 3) << '\n';



produces the output



1



which confirms that BinSearch is instantiated as expected.

		(

Class Template Definition

A class template definition (or declaration) is always preceded by a template clause. For example,



template <class Type> class Stack;



declares a class template named Stack. A class template clause follows the same syntax rules as a function template clause.

	The definition of a class template is very similar to a normal class, except that the specified type parameters can be referred to within the definition. The definition of Stack is shown in Listing 9.�seq listing StackDefinition�4�.

Listing 9.�seq listing�4�

1 

 2 

3 

4

5

6

7

8

9

10

11

12

13

14

15  �template <class Type>

class Stack {

public:

			Stack	(int max) :	stack(new Type[max]),

								top(-1), maxSize(max) {}

			~Stack	(void)		{delete [] stack;}

	void	Push	(Type &val);

	void	Pop		(void)		{if (top >= 0) --top;}

	Type&	Top		(void)		{return stack[top];}

	friend	ostream& operator << (ostream&, Stack&);

private:

	Type		*stack;		// stack array

	int			top;		// index of top stack entry

	const int	maxSize;	// max size of stack

};��

The member functions of Stack are defined inline except for Push. The << operator is also overloaded to display the stack contents for testing purposes. These two are defined as follows:



template <class Type>

void Stack<Type>::Push (Type &val)

{

	if (top+1 < maxSize)

		stack[++top] = val;

}



template <class Type>

ostream& operator << (ostream& os, Stack<Type>& s)

{

	for (register i = 0; i <= s.top; ++i)

		os << s.stack[i] << " ";

	return os;

}



Except for within the class definition itself, a reference to a class template must include its template parameter list. This is why the definition of Push and << use the name Stack<Type> instead of Stack.	(

Class Template Instantiation

A class template represents a generic class from which executable implementations of the class can be generated by binding its type parameters to concrete (built-in or user-defined) types. For example, given the earlier template definition of Stack, it is easy to generate stacks of a variety of types through instantiation:



Stack<int>	  s1(10);		// stack of integers

Stack<double> s2(10);		// stack of doubles

Stack<Point>  s3(10);		// stack of points



Each of these instantiations causes the member functions of the class to be accordingly instantiated. So, for example, in the first instantiation, the member functions will be instantiated with Type bounds to int. Therefore,



s1.Push(10);

s1.Push(20);

s1.Push(30);

cout << s1 << '\n';



will produce the following output:



10 20 30



	When a nontemplate class or function refers to a class template, it should bind the latter’s type parameters to defined types. For example:



class Sample {

	Stack<int>	intStack;	// ok

	Stack<Type>	typeStack;	// illegal! Type is undefined

	//...

};



The combination of a class template and arguments for all of its type parameters (e.g., Stack<int>) represents a valid type specifier. It may appear wherever a C++ type may appear.

	If a class template is used as a part of the definition of another class template (or function template), then the former’s type parameters can be bound to the latter’s template parameters. For example:



template <class Type>

class Sample {

	Stack<int>	intStack;	// ok

	Stack<Type>	typeStack;	// ok

	//...

};



		(

Nontype Parameters

Unlike a function template, not all parameters of a class template are required to represents types. Value parameters (of defined types) may also be used. Listing 9.�seq listing Stack2�5� shows a variation of the Stack class, where the maximum size of the stack is denoted by a template parameter (rather than a data member).



Listing 9.�seq listing�5�

1 

 2 

3 

4

5

6

7

8

9

10

11

12  �template <class Type, int maxSize>

class Stack {

public:

			Stack	(void) :	stack(new Type[maxSize]), top(-1) {}

			~Stack	(void)		{delete [] stack;}

	void	Push	(Type &val);

	void	Pop		(void)		{if (top >= 0) --top;}

	Type	&Top	(void)		{return stack[top];}

private:

	Type	*stack;		// stack array

	int		top;		// index of top stack entry

};��

	Both parameters are now required for referring to Stack outside the class. For example, Push is now defined as follows:



template <class Type, int maxSize>

void Stack<Type, maxSize>::Push (Type &val)

{

	if (top+1 < maxSize)

		stack[++top] = val;

}



	Unfortunately, the operator << cannot be defined as before, since value template parameters are not allowed for nonmember functions:



template <class Type, int maxSize>		// illegal!

ostream &operator << (ostream&, Stack<Type, maxSize>&);



	Instantiating the Stack template now requires providing two arguments: a defined type for Type and a defined integer value for maxSize. The type of the value must match the type of value parameter exactly. The value itself must be a constant expression which can be evaluated at compile-time. For example:



Stack<int, 10>	s1;		// ok

Stack<int, 10u>	s2;		// illegal! 10u doesn't match int

Stack<int, 5+5> s3;		// ok

int n = 10;

Stack<int, n>	s4;		// illegal! n is a run-time value

		(

Class Template Specialization

The algorithms defined by the member functions of a class template may be inappropriate for certain types. For example, instantiating the Stack class with the type char* may lead to problems because the Push function will simply push a string pointer onto the stack without copying it. As a result, if the original string is destroyed the stack entry will be invalid.

	Such cases can be properly handled by specializing the inappropriate member functions. Like a global function template, a member function of a class template is specialized by providing an implementation of it based on a particular type. For example,



void Stack<char*>::Push (char* &val)

{

	if (top+1 < maxSize) {

		stack[++top] = new char[strlen(val) + 1];

		strcpy(stack[top], val);

    }

}



specializes the Push member for the char* type. To free the allocated storage, Pop needs to be specialized as well:



void Stack<char*>::Pop (void)

{

	if (top >= 0)

		delete stack[top--];

}



	It is also possible to specialize a class template as a whole, in which case all the class members must be specialized as a part of the process:



typedef char* Str;

class Stack<Str> {

public:

			Stack<Str>::Stack	(int max) :	stack(new Str[max]),

								top(-1), maxSize(max) {}

			~Stack	(void)		{delete [] stack;}

	void	Push	(Str val);

	void	Pop		(void);

	Str		Top		(void)		{return stack[top];}

	friend	ostream& operator << (ostream&, Stack<Str>&);

private:

	Str			*stack;		// stack array

	int			top;		// index of top stack entry

	const int	maxSize;	// max size of stack

};



	Although the friend declaration of << is necessary, because this is a nonmember function, its earlier definition suffices.	(

Class Template Members

A class template may have constant, reference, and static members just like an ordinary class. The use of constant and reference members is exactly as before. Static data members are shared by the objects of an instantiation. There will therefore be an instance of each static data member per instantiation of the class template.

	As an example, consider adding a static data member to the Stack class to enable Top to return a value when the stack is empty:



template <class Type>

class Stack {

public:

	//...

	Type&	Top	(void);

private:

	//...

    static	Type	dummy;		// dummy entry

};



template <class Type>

Type& Stack<Type>::Top (void)

{

	return top >= 0 ? stack[top] : dummy;



}



	There are two ways in which a static data member can be initialized: as a template or as a specific type. For example,



template <class Type> Type Stack<Type>::dummy = 0;



provides a template initialization for dummy. This is instantiated for each instantiation of Stack. (Note, however, that the value 0 may be inappropriate for non-numeric types).

	Alternatively, an explicit instance of this initialization may be provided for each instantiation of Stack. A Stack<int> instantiation, for example, could use the following initialization of dummy:



int Stack<int>::dummy = 0;



		(

Class Template Friends

When a function or class is declared as a friend of a class template, the friendship can take one of there forms, as illustrated by the following example.

	Consider the Stack class template and a function template named Foo:



template <class T> void Foo (T&);



We wish to define a class named Sample and declare Foo and Stack as its friends. The following makes a specific instance of Foo and Stack friends of all instances of Sample:



template <class T>

class Sample {				// one-to-many friendship

	friend Foo<int>;

	friend Stack<int>;

	//...

};



	Alternatively, we can make each instance of Foo and Stack a friend of its corresponding instance of Sample:



template <class T>

class Sample {				// one-to-one friendship

	friend Foo<T>;

	friend Stack<T>;

	//...

};



This means that, for example, Foo<int> and Stack<int> are friends of Sample<int>, but not Sample<double>.

	The extreme case of making all instances of Foo and Stack friends of all instances of Sample is expressed as:



template <class T>

class Sample {				// many-to-many friendship

	template <class T> friend Foo;

    template <class T> friend class Stack;

	//...

};



	The choice as to which form of friendship to use depends on the intentions of the programmer.

		(

Example: Doubly-linked Lists

A container type is a type which in turn contains objects of another type. A linked-list represents one of the simplest and most popular forms of container types. It consists of a set of elements, each of which contains a pointer to the next element in the list. In a doubly-linked list, each element also contains a pointer to the previous element in the list. Figure 9.�seq figure LinkedList�1� illustrates a doubly-linked list of integers.



Figure 9.�seq figure�1�	A doubly-linked list of integers.��	�EMBED MSDraw  \* MERGEFORMAT�����

	Because a container class can conceivably contain objects of any type, it is best defined as a class template. Listing 9.�seq listing LinkedListClass�6� show the definition of doubly-linked lists as two class templates.



Listing 9.�seq listing�6�

1 

 

2 

3 



4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31  �#include <iostream.h>



enum  Bool {false, true};

template <class Type> class List;	// forward declaration



template <class Type>

class ListElem {

public:

				ListElem	(const Type elem) : val(elem)

							{prev = next = 0;}

	Type&		Value		(void)		{return val;}

	ListElem*	Prev		(void)		{return prev;}

    ListElem	*	Next		(void)		{return next;}

	friend class List<Type>;	// one-to-one friendship

protected:

	Type		val;		// the element value

	ListElem	*prev;		// previous element in the list

	ListElem	*next;		// next element in the list

};

//---------------------------------------------------------

template <class Type>

class List {

public:

					List	(void)	{first = last = 0;}

					~List	(void);

	virtual	void	Insert	(const Type&);

	virtual	void	Remove	(const Type&);

	virtual	Bool	Member	(const Type&);

	friend	ostream& operator <<	(ostream&, List&);

protected:

	ListElem<Type>	*first;	// first element in the list

	ListElem<Type>	*last;	// last element in the list

};��

Annotation

3	This forward declaration of the List class is necessary because ListElem refers to List before the latter’s definition.

5-17	ListElem represents a list element. It consists of a value whose type is denoted by the type parameter Type, and two pointers which point to the previous and next elements in the list. List is declared as a one-to-one friend of ListElem, because the former’s implementation requires access to the nonpublic members of the latter.

20	List represents a doubly-linked list.

24	Insert inserts a new element in front of the list.

25	Remove removes the list element, if any, whose value matches its parameter.

26	Member returns true if val is in the list, and false otherwise.

27	Operator << is overloaded for the output of lists.

29-30	First and last, respectively, point to the first and last element in the list. Note that these two are declared of type ListElem<Type>* and not ListElem*, because the declaration is outside the ListElem class.



Insert, Remove, and Element are all defined as virtual to allow a class derived from List to override them.

	All of the member functions of ListElem are defined inline. The definition of List member functions is as follows:



template <class Type>

List<Type>::~List (void)

{

	ListElem<Type> *handy;

	ListElem<Type> *next;



	for (handy = first; handy != 0; handy = next) {

		next = handy->next;

		delete handy;

	}

}

�//-------------------------------------------------------------------

template <class Type>

void List<Type>::Insert (const Type &elem)

{

	ListElem<Type> *handy = new ListElem<Type>(elem);



	handy->next = first;

	if (first != 0)

		first->prev = handy;

	if (last == 0)

		last = handy;

    first = handy;

}

//-------------------------------------------------------------------

template <class Type>

void List<Type>::Remove (const Type &val)

{

	ListElem<Type> *handy;



	for (handy = first; handy != 0; handy = handy->next) {

		if (handy->val == val) {                                    

			if (handy->next != 0)

				handy->next->prev = handy->prev;

			else

				last = handy->prev;

			if (handy->prev != 0)

				handy->prev->next = handy->next;

			else

				first = handy->next;

			delete handy;

		}

	}

}

//-------------------------------------------------------------------

template <class Type>

Bool List<Type>::Member (const Type &val)

{

	ListElem<Type> *handy;



	for (handy = first; handy != 0; handy = handy->next)

		if (handy->val == val)

        	return true;

	return false;

}



	The << is overloaded for both classes. The overloading of << for ListElem does not require it to be declared a friend of the class because it is defined in terms of public members only:



�template <class Type>

ostream& operator << (ostream &os, ListElem<Type> &elem)

{

	os << elem.Value();

    return os;

}

//-------------------------------------------------------------------

template <class Type>

ostream& operator << (ostream &os, List<Type> &list)

{

	ListElem<Type> *handy = list.first;



	os << "< ";

	for (; handy != 0; handy = handy->Next())

		os << *handy << ' ';

	os << '>';

    return os;

}



Here is a simple test of the class which creates the list shown in Figure 9.�seq figure LinkedList�1�:



int main (void)

{

	List<int>	list;



	list.Insert(30);

	list.Insert(20);

	list.Insert(10);

	cout << "list = " << list << '\n';

	if (list.Member(20)) cout << "20 is in list\n";

	cout << "Removed 20\n";

	list.Remove(20);

	cout << "list = " << list << '\n';

	return 0;

}



It will produce the following output:



list = < 10 20 30 >

20 is in list

Removed 20

< 10 30 >



		(

Derived Class Templates

A class template (or its instantiation) can serve as the base of a derived class:



template <class Type>

class SmartList : public List<Type>;		// template base



class Primes : protected List<int>;		// instantiated base



	A template base class, such as List, should always be accompanied with its parameter list (or arguments if instantiated). The following is therefore invalid:



template <class Type>

class SmartList : public List;		// illegal! <Type> missing



	It would be equally incorrect to attempt to derive a nontemplate class from a (non-instantiated) template class:



class SmartList : public List<Type>;	// illegal! template expected



	It is, however, perfectly acceptable for a normal class to serve as the base of a derived template class:



class X;

template <class Type> class Y : X;		// ok



	As an example of a derived class template, consider deriving a Set class from List. Given that a set consists of unique elements only (i.e., no repetitions), all we need to do is override the Insert member function to ensure this (see Listing 9.�seq listing SetClass�7�).



Listing 9.�seq listing�7�

1 

 2 

3 

4

5

6  �template <class Type>

class Set : public List<Type> {

public:

	virtual	void	Insert	(const Type &val)

					{if (!Member(val)) List<Type>::Insert(val);}

};��

		(

Exercises

9.�seq exercise�1�	Define a Swap function template for swapping two objects of the same type.



9.�seq exercise�2�	Rewrite the BubbleSort function (Exercise 5.4) as a function template. Provide a specialization of the function for strings.



9.�seq exercise�3�	Rewrite the BinaryTree class (Exercise 6.6) as a class template. Provide a specialization of the class for strings.



9.�seq exercise�4�	Rewrite the Database, BTree, and BStar classes (Exercise 8.4) as class templates.



		(

�PAGE�186�	C++ Programming	Copyright © 1998 Pragmatix Software 



www.pragsoft.com	Chapter 9: Templates	�PAGE�187�








