

11.	The IO Library

C++ has no built-in Input/Output (IO) capability. Instead, this capability is provided by a library. The standard C++ IO library is called the iostream library. The definition of the library classes is divided into three header files. An additional header file defines a set of manipulators which act on streams. These are summarized by Table 11.�seq table HeaderFiles�1�.

	Figure 11.�seq figure IOStreamClasses�1� relates these header files to a class hierarchy for a UNIX-based implementation of the iostream class hierarchy. The highest-level classes appear unshaded. A user of the iostream library typically works with these classes only. Table 11.�seq table HighLevelClasses�2� summarizes the role of these high-level classes. The library also provides four predefined stream objects for the common use of programs. These are summarized by Table 11.�seq table PredefinedStreams�3�.

Table 11.�seq table�1�	Iostream header files.

Header File�
Description�
�
iostream.h�
Defines a hierarchy of classes for low-level (untyped character-level) IO and high-level (typed) IO. This includes the definition of the ios, istream, ostream, and iostream classes.�
�
fstream.h�
Derives a set of classes from those defined in iostream.h for file IO. This includes the definition of the ifstream, ofstream, and fstream classes.�
�
strstream.h�
Derives a set of classes from those defined in iostream.h for IO with respect to character arrays. This includes the definition of the istrstream, ostrstream, and strstream classes.�
�
iomanip.h�
Defines a set of manipulator which operate on streams to produce useful effects.�
�

Table 11.�seq table�2�	Highest-level iostream classes.

Form of IO�
Input�
Output�
Input and Output�
�
Standard IO�
istream�
ostream�
iostream�
�
File IO�
ifstream�
ofstream�
fstream�
�
Array of char IO�
istrstream�
ostrstream�
strstream�
�

Table 11.�seq table�3�	Predefined streams.

Stream�
Type�
Buffered�
Description�
�
cin�
istream�
Yes�
Connected to standard input (e.g., the keyboard)�
�
cout�
ostream�
Yes�
Connected to standard output (e.g., the monitor)�
�
clog�
ostream�
Yes�
Connected to standard error (e.g., the monitor)�
�
cerr�
ostream�
No�
Connected to standard error (e.g., the monitor)�
�

	A stream may be used for input, output, or both. The act of reading data from an input stream is called extraction. It is performed using the >> operator (called the extraction operator) or an iostream member function. Similarly, the act of writing data to an output stream is called insertion, and is performed using the << operator (called the insertion operator) or an iostream member function. We therefore speak of ‘extracting data from an input stream’ and ‘inserting data into an output stream’.

	

Figure 11.�seq figure�1� Iostream class hierarchy.�
�
	�EMBED MSDraw * MERGEFORMAT����
�
The Role of streambuf

The iostream library is based on a two layer model. The upper layer deals with formatted IO of typed objects (built-in or user-defined). The lower layer deals with unformatted IO of streams of characters, and is defined in terms of streambuf objects (see Figure 11.�seq figure IOLayers�2�). All stream classes contain a pointer to a streambuf object or one derived from it.

Figure 11.�seq figure�2� Two-layer IO model.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	The streambuf layer provides buffering capability and hides the details of physical IO device handling. Under normal circumstances, the user need not worry about or directly work with streambuf objects. These are indirectly employed by streams. However, a basic understanding of how a streambuf operates makes it easier to understand some of the operations of streams.

	Think of a streambuf as a sequence of characters which can grow or shrink. Depending on the type of the stream, one or two pointers are associated with this sequence (see Figure 11.�seq figure PutGetPointers�3�):

�SYMBOL 183 \f "Symbol" \s 10 \h�	A put pointer points to the position of the next character to be deposited into the sequence as a result of an insertion.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A get pointer points to the position of the next character to be fetched from the sequence as a result of an extraction.

For example, ostream only has a put pointer, istream only has a get pointer, and iostream has both pointers.

Figure 11.�seq figure�3� Streambuf put and get pointers.�
�
	�EMBED MSDraw * MERGEFORMAT����
�

	When a stream is created, a streambuf is associated with it. Therefore, the stream classes provide constructors which take a streambuf* argument. All stream classes overload the insertion and extraction operators for use with a streambuf* operand. The insertion or extraction of a streambuf causes the entire stream represented by it to be copied.	(

Stream Output with ostream

Ostream provides formatted output capability. Use of the insertion operator << for stream output was introduced in Chapter 1, and employed throughout this book. The overloading of the insertion operator for user-defined types was discussed in Chapter 7. This section looks at the ostream member functions.

	The put member function provides a simple method of inserting a single character into an output stream. For example, assuming that os is an ostream object,

os.put('a');

inserts 'a' into os.

	Similarly, write inserts a string of characters into an output stream. For example,

os.write(str, 10);

inserts the first 10 characters from str into os.

	An output stream can be flushed by invoking its flush member function. Flushing causes any buffered data to be immediately sent to output:

os.flush();		// flushes the os buffer

	The position of an output stream put pointer can be queried using tellp and adjusted using seekp. For example,

os.seekp(os.tellp() + 10);

moves the put pointer 10 characters forward. An optional second argument to seekp enables the position to be specified relatively rather than absolutely. For example, the above is equivalent to:

os.seekp(10, ios::cur);

The second argument may be one of:

�SYMBOL 183 \f "Symbol" \s 10 \h�	ios::beg for positions relative to the beginning of the stream,

�SYMBOL 183 \f "Symbol" \s 10 \h�	ios::cur for positions relative to the current put pointer position, or

�SYMBOL 183 \f "Symbol" \s 10 \h�	ios::end for positions relative to the end of the stream.

These are defined as a public enumeration in the ios class.

	Table 11.�seq table ostreamMembers�4� summarizes the ostream member functions. All output functions with an ostream& return type, return the stream for which they are invoked. Multiple calls to such functions can be concatenated (i.e., combined into one statement). For example,

os.put('a').put('b');

is valid and is equivalent to:

os.put('a');

os.put('b');

Table 11.�seq table�4�	Member functions of ostream.

ostream (streambuf*);

	The constructor associates a streambuf (or its derivation) with the class to provide an output stream.�
�
ostream& put (char);

	Inserts a character into the stream.�
�
ostream& write (const signed char*, int n);

ostream& write (const unsigned char*, int n);

	Inserts n signed or unsigned characters into the stream.�
�
ostream& flush ();

	Flushes the stream.�
�
long tellp ();

	Returns the current stream put pointer position.�
�
ostream& seekp (long, seek_dir = ios::beg);

	Moves the put pointer to a character position in the stream relative to the beginning, the current, or the end position:

	enum seek_dir {beg, cur, end};�
�

		(

Stream Input with istream

Istream provides formatted input capability. Use of the extraction operator >> for stream input was introduced in Chapter 1. The overloading of the extraction operator for user-defined types was discussed in Chapter 7. This section looks at the istream member functions.

	The get member function provides a simple method of extracting a single character from an input stream. For example, assuming that is is an istream object,

int ch = is.get();

extracts and returns the character denoted by the get pointer of is, and advances the get pointer. A variation of get, called peek, does the same but does not advance the get pointer. In other words, it allows you to examine the next input character without extracting it. The effect of a call to get can be canceled by calling putback which deposits the extracted character back into the stream:

is.putback(ch);

The return type of get and peek is an int (not char). This is because the end-of-file character (EOF) is usually given the value -1.

	The behavior of get is different from the extraction operator in that the former does not skip blanks. For example, an input line consisting of

x y

(i.e., 'x', space, 'y', newline) would be extracted by four calls to get. the same line would be extracted by two applications of >>.

	Other variations of get are also provided. See Table 11.�seq table istreamFunctions�5� for a summary.

	The read member function extracts a string of characters from an input stream. For example,

char buf[64];

is.read(buf, 64);

extracts up to 64 characters from is and deposits them into buf. Of course, if EOF is encountered in the process, less characters will be extracted. The actual number of characters extracted is obtained by calling gcount.

	A variation of read, called getline, allows extraction of characters until a user-specified delimiter is encountered. For example,

is.getline(buf, 64, '\t');

is similar to the above call to read but stops the extraction if a tab character is encountered. The delimiter, although extracted if encountered within the specified number of characters, is not deposited into buf.

	Input characters can be skipped by calling ignore. For example,

is.ignore(10, '\n');

extracts and discards up to 10 characters but stops if a newline character is encountered. The delimiters itself is also extracted and discarded.

	The position of an input stream get pointer can be queried using tellg and adjusted using seekg. For example,

is.seekp(is.tellg() - 10);

moves the get pointer 10 characters backward. An optional second argument to seekg enables the position to be specified relatively rather than absolutely. For example, the above is equivalent to:

is.seekg(-10, ios::cur);

As with seekp, the second argument may be one of ios::beg, ios::cur, or ios::end.

	Table 11.�seq table istreamFunctions�5� summarizes the istream member functions. All input functions with an istream& return type, return the stream for which they are invoked. Multiple calls to such functions can therefore be concatenated. For example,

is.get(ch1).get(ch2);

is valid and is equivalent to:

is.get(ch1);

is.get(ch2);

	The iostream class is derived from the istream and ostream classes and inherits their public members as its own public members:

class iostream : public istream, public ostream {

	//...

};

An iostream object is used for both insertion and extraction; it can invoke any of the functions listed in Tables 11.�seq table ostreamMembers�4� and 11.�seq table istreamFunctions�5�.

�
Table 11.�seq table�5�	Member functions of istream.

istream (streambuf*)

	The constructor associates a streambuf (or its derivation) with the class to provide an input stream.�
�
int get ();

istream& get (signed char&);

istream& get (unsigned char&);

istream& get (streambuf&, char = '\n');

	The first version extracts the next character (including EOF). The second and third versions are similar but instead deposit the character into their parameter. The last version extracts and deposit characters into the given streambuf until the delimiter denoted by its last parameter is encountered.�
�
int peek ();

	Returns the next input character without extracting it.�
�
istream& putback (char);

	Pushes an extracted character back into the stream.�
�
istream& read (signed char*, int n);

istream& read (unsigned char*, int n);

	Extracts up to n characters into the given array, but stops if EOF is encountered.�
�
istream& getline (signed char*, int n, char = '\n');

istream& getline (unsigned char*, int n, char = '\n');

	Extracts at most n-1 characters, or until the delimiter denoted by the last parameter or EOF is encountered, and deposit them into the given array, which is always null-terminated. The delimiter, if encountered and extracted, is not deposited into the array.�
�
int gcount ();

	Returns the number of characters last extracted as a result of calling read or getline.�
�
istream& ignore (int n = 1, int = EOF);

	Skips up to n characters, but extracts and stops if the delimiter denoted by the last parameter is encountered.�
�
long tellg ();

	Returns the current stream get pointer position.�
�
istream& seekg (long, seek_dir = ios::cur);

	Moves the get pointer to a character position in the stream relative to the beginning, the current, or the end position:

	enum seek_dir {beg, cur, end};�
�

		(

Using the ios Class

Ios provides capabilities common to both input and output streams. It uses a streambuf for buffering of data and maintains operational information on the state of the streambuf (i.e., IO errors). It also keeps formatting information for the use of its client classes (e.g., istream and ostream).

	The definition of ios contains a number of public enumerations whose values are summarized by Table 11.�seq table StateBits�6�. The io_state values are used for the state data member which is a bit vector of IO error flags. The formatting flags are used for the x_flags data member (a bit vector). The open_mode values are bit flags for specifying the opening mode of a stream. The seek_dir values specify the seek direction for seekp and seekg.

Table 11.�seq table�6�	Useful public enumerations in ios.

enum io_state:�
Provides status flags (for ios::state).�
�
	ios::goodbit�
When state is set to this value, it means that all is ok.�
�
	ios::eofbit�
End-of-file has been reached.�
�
	ios::badbit�
An invalid operation has been attempted.�
�
	ios::failbit�
The last IO operation attempted has failed.�
�
	ios::hardfail�
An unrecoverable error has taken place.�
�
Anonymous enum:�
Provides formatting flags.�
�
	ios::left�
Left-adjust the output.�
�
	ios::right�
Right-adjust the output.�
�
	ios::internal�
Output padding indicator.�
�
	ios::dec�
Convert to decimal.�
�
	ios::oct�
Convert to octal.�
�
	ios::hex�
Convert to hexadecimal.�
�
	ios::showbase�
Show the base on output.�
�
	ios::showpoint�
Show the decimal point on output.�
�
	ios::uppercase�
Use upper case for hexadecimal output.�
�
	ios::showpos�
Show the + symbol for positive integers.�
�
	ios::fixed�
Use the floating notation for reals.�
�
	ios::scientific�
Use the scientific notation for reals.�
�
	ios::skipws�
Skip blanks (white spaces) on input.�
�
	ios::unitbuf�
Flush all streams after insertion.�
�
enum open_mode:�
Provides values for stream opening mode.�
�
	ios::in�
Stream open for input.�
�
	ios::out�
Stream open for output.�
�
	ios::app�
Append data to the end of the file.�
�
	ios::ate�
Upon opening the stream, seek to EOF.�
�
	ios::trunc�
Truncate existing file.�
�
	ios::noreplace�
Open should fail if file already exists.�
�
	ios::nocreate�
Open should fail if file does not already exist.�
�
	ios::binary�
Binary file (as opposed to default text file).�
�
enum seek_dir:�
Provides values for relative seek.�
�
	ios::beg�
Seek relative to the beginning of the stream.�
�
	ios::cur�
Seek relative to the current put/get pointer position.�
�
	ios::end�
Seek relative to the end of the stream.�
�

	IO operations may result in IO errors, which can be checked for using a number of ios member functions. For example, good returns nonzero if no error has occurred:

if (s.good())

	// all is ok...

where s is an iostream. Similarly, bad returns nonzero if an invalid IO operation has been attempted:

if (s.bad())

	// invalid IO operation...

and fail returns true if the last attempted IO operation has failed (or if bad() is true):

if (s.fail())

	// last IO operation failed...

A shorthand for this is provided, based on the overloading of the ! operator:

if (!s)		// same as: if (s.fail())

	// ...

The opposite shorthand is provided through the overloading of the void* so that it returns zero when fail returns nonzero. This makes it possible to check for errors in the following fashion:

if (cin >> str)

	// no error occurred

	The entire error bit vector can be obtained by calling rdstate, and cleared by calling clear. User-defined IO operations can report errors by calling setstate. For example,

s.setstate(ios::eofbit | ios::badbit);

sets the eofbit and badbit flags.

	Ios also provides various formatting member functions. For example, precision can be used to change the precision for displaying floating point numbers:

cout.precision(4);

cout << 233.123456789 << '\n';

This will produce the output:

233.1235

The width member function is used to specify the minimum width of the next output object. For example,

cout.width(5);

cout << 10 << '\n';

will use exactly 5 character to display 10:

 10

An object requiring more than the specified width will not be restricted to it. Also, the specified width applies only to the next object to be output. By default, spaces are used to pad the object up to the specified minimum size. The padding character can be changed using fill. For example,

cout.width(5);

cout.fill('*');

cout << 10 << '\n';

will produce:

***10

	The formatting flags listed in Table 11.�seq table StateBits�6� can be manipulated using the setf member function. For example,

cout.setf(ios::scientific);

cout << 3.14 << '\n';

will display:

3.14e+00

Another version of setf takes a second argument which specifies formatting flags which need to be reset beforehand. The second argument is typically one of:

ios::basefield (ios::dec | ios::oct | ios::hex

ios::adjustfield (ios::left | ios::right | ios::internal

ios::floatfield (ios::scientific | ios::fixed

For example,

cout.setf(ios::hex | ios::uppercase, ios::basefield);

cout << 123456 << '\n';

will display:

1E240

Formatting flags can be reset by calling unsetf, and set as a whole or examined by calling flags. For example, to disable the skipping of leading blanks for an input stream such as cin, we can write:

cin.unsetf(ios::skipws);

	Table 11.�seq table IosMembers�7� summarizes the member functions of ios.

Table 11.�seq table�7�	Member functions of ios.

ios (streambuf*);

	The constructor associates a streambuf (or its derivation) with the class.�
�
void init (streambuf*);

	Associates the specified streambuf with the stream.�
�
streambuf* rdbuf (void);

	Returns a pointer to the stream’s associated streambuf.�
�
int good (void);

	Examines ios::state and returns zero if bits have been set as a result of an error.�
�
int bad (void);

	Examines the ios::badbit and ios::hardfail bits in ios::state and returns nonzero if an IO error has occurred. �
�
int fail (void);

	Examines the ios::failbit, ios::badbit, and ios::hardfail bits in ios::state and returns nonzero if an operation has failed.�
�
int eof (void);

	Examines the ios::eofbit in ios::state and returns nonzero if the end-of-file has been reached.�
�
void clear (int = 0);

	Sets the ios::state value to the value specified by the parameter.�
�
void setstate (int);

	Sets the ios::state bits specified by the parameter.�
�
int rdstate (void);

	Returns ios::state.�
�
int precision (void);

int precision (int);

	The first version returns the current floating-point precision. The second version sets the floating-point precision and returns the previous floating-point precision.�
�
int width (void);

int width (int);

	The first version returns the current field width. The second version sets the field width and returns the previous setting.�
�
char fill (void);

char fill (char);

	The first version returns the current fill character. The second version changes the fill character and returns the previous fill character.�
�
long setf (long);

long setf (long, long);

	The first version sets the formatting flags denoted by the parameter. The second version also clears the flags denoted by its second argument. Both return the previous setting.�
�
long unsetf (long);

	Clears the formatting flags denoted by its parameter, and returns the previous setting.�
�
long flags (void);

long flags (long);

	The first version returns the format flags (this is a sequence of formatting bits). The second version sets the formatting flags to a given value (flags(0) restores default formats), and return the previous setting.�
�
ostream* tie (void);

ostream* tie (ostream*);

	Returns the tied stream, if any, and zero otherwise. The second version ties the stream denoted by its parameter to this stream and returns the previously-tied stream. When two streams are tied the use of one affects the other. For example, because cin, cerr, and clog are all tied to cout, using any of the first three causes cout to be flushed first.�
�

		(

Stream Manipulators

A manipulator is an identifier that can be inserted into an output stream or extracted from an input stream in order to produce a desired effect. For example, endl is a commonly-used manipulator which inserts a newline into an output stream and flushes it. Therefore,

cout << 10 << endl;

has the same effect as:

cout << 10 << '\n';

	In general, most formatting operations are more easily expressed using manipulators than using setf. For example,

cout << oct << 10 << endl;

is an easier way of saying:

cout.setf(ios::oct, ios::basefield);

cout << 10 << endl;

	Some manipulators also take parameters. For example, the setw manipulator is used to set the field width of the next IO object:

cout << setw(8) << 10;	// sets the width of 10 to 8 characters

	Table 11.�seq table Manipulators�8� summarizes the predefined manipulators of the iostream library.

Table 11.�seq table�8�	Predefined manipulators.

Manipulator�
Stream Type�
Description�
�
endl�
output�
Inserts a newline character and flushes the stream.�
�
ends�
output�
Inserts a null-terminating character.�
�
flush�
output�
Flushes the output stream.�
�
dec�
input/output�
Sets the conversion base to decimal.�
�
hex�
input/output�
Sets the conversion base to hexadecimal.�
�
oct�
input/output�
Sets the conversion base to octal.�
�
ws�
input�
Extracts blanks (white space) characters.�
�
setbase(int)�
input/output�
Sets the conversion base to one of 8, 10, or 16.�
�
resetiosflags(long)�
input/output�
Clears the status flags denoted by the argument.�
�
setiosflags(long)�
input/output�
Sets the status flags denoted by the argument.�
�
setfill(int)�
input/output�
Sets the padding character to the argument.�
�
setprecision(int)�
input/output�
Sets the floating-point precision to the argument.�
�
setw(int)�
input/output�
Sets the field width to the argument.�
�

		(

File IO with fstreams

A program which performs IO with respect to an external file should include the header file fstream.h. Because the classes defined in this file are derived from iostream classes, fstream.h also includes iostream.h.

	A file can be opened for output by creating an ofstream object and specifying the file name and mode as arguments to the constructor. For example,

ofstream log("log.dat", ios::out);

	

opens a file named log.dat for output (see Table 11.�seq table StateBits�6� for a list of the open mode values) and connects it to the ofstream log. It is also possible to create an ofstream object first and then connect the file later by calling open:

ofstream log;

log.open("log.dat", ios::out);

	

	Because ofstream is derived from ostream, all the public member functions of the latter can also be invoked for ofstream objects. First, however, we should check that the file is opened as expected:

if (!log)

	cerr << "can't open 'log.dat'\n";

else {

	char *str = "A piece of text";

	log.write(str, strlen(str));

	log << endl;

}

	The external file connected to an ostream can be closed and disconnected by calling close:

log.close();

	

	A file can be opened for input by creating an ifstream object. For example,

ifstream inf("names.dat", ios::in);

	

opens the file names.dat for input and connects it to the ifstream inf. Because ifstream is derived from istream, all the public member functions of the latter can also be invoked for ifstream objects.

	The fstream class is derived from iostream and can be used for opening a file for input as well as output. For example:

fstream iof;

iof.open("names.dat", ios::out);		// output

iof << "Adam\n";

iof.close();

char name[64];

iof.open("names.dat", ios::in);		// input

iof >> name;

iof.close();

	Table 11.�seq table fstreamFunctions�9� summarizes the member functions of ofstream, istream, and fstream (in addition to those inherited from their base classes).

Table 11.�seq table�9�	Member functions of ofstream, ifstream, and fstream.

ofstream (void);

ofstream (int fd);

ofstream (int fd, char* buf, int size);

ofstream (const char*, int=ios::out, int=filebuf::openprot);

	The first version makes an ofstream which is not attached to a file. The second version makes an ofstream and connects it to an open file descriptor. The third version does the same but also uses a user-specified buffer of a given size. The last version makes an ofstream and opens and connects a specified file to it for writing.�
�
ifstream (void);

ifstream (int fd);

ifstream (int fd, char* buf, int size);

ifstream (const char*, int=ios::in, int=filebuf::openprot);

	Similar to ofstream constructors.�
�
fstream (void);

fstream (int fd);

fstream (int fd, char* buf, int size);

fstream (const char*, int, int=filebuf::openprot);

	Similar to ofstream constructors.�
�
void open (const char*, int, int = filebuf::openprot);

	Opens a file for an ofstream, ifstream, or fstream.�
�
void close (void);

	Closes the associated filebuf and file. �
�
void attach(int);

	Connects to an open file descriptor. �
�
void setbuf(char*, int);

	Assigns a user-specified buffer to the filebuf.�
�
filebuf* rdbuf (void);

	Returns the associated filebuf.�
�

		(

Array IO with strstreams

The classes defined in strstream.h support IO operations with respect to arrays of characters. Insertion and extraction on such streams causes the data to be moved into and out of its character array. Because these classes are derived from iostream classes, this file also includes iostream.h.

	The three highest-level array IO classes (ostrstream, istrstream, strstream) are very similar to the file IO counterparts (ofstream, ifstream, fstream). As before, they are derived from iostream classes and therefore inherit their member functions.

	An ostrstream object is used for output. It can be created with either a dynamically-allocated internal buffer, or a user-specified buffer:

ostrstream odyn;					// dynamic buffer

char buffer[1024];

ostrstream ssta(buffer, 1024);	// user-specified buffer

The static version (ssta) is more appropriate for situations where the user is certain of an upper bound on the stream buffer size. In the dynamic version, the object is responsible for resizing the buffer as needed.

	After all the insertions into an ostrstream have been completed, the user can obtain a pointer to the stream buffer by calling str:

char *buf = odyn.str();

This freezes odyn (disabling all future insertions). If str is not called before odyn goes out of scope, the class destructor will destroy the buffer. However, when str is called, this responsibility rests with the user. Therefore, the user should make sure that when buf is no longer needed it is deleted:

delete buf;

	An istrstream object is used for input. Its definition requires a character array to be provided as a source of input:

char data[128];

//...

istrstream istr(data, 128);

Alternatively, the user may choose not to specify the size of the character array:

istrstream istr(data);

The advantage of the former is that extraction operations will not attempt to go beyond the end of data array.

	Table 11.�seq table strstreamFunctions�10� summarizes the member functions of ostrstream, istrstream, and strstream (in addition to those inherited from their base classes).

Table 11.�seq table�10�	Member functions of ostrstream, istrstream, and strstream.

ostrstream (void);

ostrstream (char *buf, int size, int mode = ios::out);

	The first version creates an ostrstream with a dynamically-allocated buffer. The second version creates an ostrstream with a user-specified buffer of a given size.�
�
istrstream (const char *);

istrstream (const char *, int n);

	The first version creates an istrstream using a given string. The second version creates an istrstream using the first n bytes of a given string.�
�
strstream (void);

strstream (char *buf, int size, int mode);

	Similar to ostrstream constructors.�
�
char* pcount (void);

	Returns the number of bytes currently stored in the buffer of an output stream.�
�
char* str (void);

	Freezes and returns the output stream buffer which, if dynamically allocated, should eventually be deallocated by the user.�
�
strstreambuf* rdbuf (void);

	Returns a pointer to the associated buffer.�
�

		(

Example: Program Annotation

Suppose we are using a language compiler which generates error message of the form:

Error 21, invalid expression

where 21 is the number of the line in the program file where the error has occurred. We would like to write a tool which takes the output of the compiler and uses it to annotate the lines in the program file which are reported to contain errors, so that, for example, instead of the above we would have something like:

0021 x = x * y +;

 Error: invalid expression

Listing 11.�seq listing Annotate�1� provides a function which performs the proposed annotation.

Annotation

6	Annotate takes two argument: inProg denotes the program file name and inData denotes the name of the file which contains the messages generated by the compiler.

8-9	InProg and inData are, respectively, connected to istreams prog and data.

12	Line is defined to be an istrstream which extracts from dLine.

21	Each time round this loop, a line of text is extracted from data into dLine, and then processed.

22-26	We are only interested in lines which start with the word Error. When a match is found, we reset the get pointer of data back to the beginning of the stream, ignore characters up to the space character before the line number, extract the line number into lineNo, and then ignore the remaining characters up to the comma following the line number (i.e., where the actual error message starts).

27-29	This loop skips prog lines until the line denoted by the error message is reached.

30-33	These insertions display the prog line containing the error and its annotation. Note that as a result of the re-arrangements, the line number is effectively removed from the error message and displayed next to the program line.

36-37	The ifstreams are closed before the function returning.

�
Listing 11.�seq listing�1�

1

 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 �
#include <fstream.h>

#include <strstream.h>

#include <iomanip.h>

#include <string.h>

const int lineSize = 128;

int Annotate (const char *inProg, const char *inData)

{

	ifstream 	prog(inProg, ios::in);

 ifstream 	data(inData, ios::in);

	char	 	pLine[lineSize];			// for prog lines

	char	 	dLine[lineSize];			// for data lines

 istrstream	line(dLine, lineSize);

 char	 	*prefix = "Error";

	int		 	prefixLen = strlen(prefix);

 int		 	progLine = 0;

	int		 	lineNo;

	if (!prog || !data) {

 	cerr << "Can't open input files\n";

		return -1;

	}

	while (data.getline(dLine, lineSize, '\n')) {

		if (strncmp(dLine, prefix, prefixLen) == 0) {

			line.seekg(0);

 	line.ignore(lineSize, ' ');

			line >> lineNo;

			line.ignore(lineSize, ',');

			while (progLine < lineNo &&

				 prog.getline(pLine, lineSize))

				++progLine;

			cout << setw(4) << setfill('0') << progLine

				 << " " << pLine << endl;

			cout << " " << prefix << ":"

				 << dLine + line.tellg() << endl;

 }

	}

	prog.close();

	data.close();

 return 0;

}�
�

The following main function provides a simple test for Annotate:

int main (void)

{

	return Annotate("prog.dat", "data.dat");

}

The contents of these two files are as follows:

prog.dat:

#defone size 100

main (void)

{

	integer n = 0;

	while (n < 10]

		++n;

	return 0;

}�
�

data.dat:

Error 1, Unknown directive: defone

Note 3, Return type of main assumed int

Error 5, unknown type: integer

Error 7,) expected�
�

When run, the program will produce the following output:

0001 #defone size 100

 Error: Unknown directive: defone

0005	integer n = 0;

 Error: unknown type: integer

0007	while (n < 10]

 Error:) expected

		(

Exercises

11.�seq exercise�1�	Use the istream member functions to define an overloaded version of the >> operator for the Set class (see Chapter 7) so that it can input sets expressed in the conventional mathematical notation (e.g., {2, 5, 1}).

11.�seq exercise�2�	Write a program which copies its standard input, line by line, to its standard output.

11.�seq exercise�3�	Write a program which copies a user-specified file to another user-specified file. Your program should be able to copy text as well as binary files.

11.�seq exercise�4�	Write a program which reads a C++ source file and checks that all instances of brackets are balanced, that is, each ‘(’ has a matching ‘)’, and similarly for [] and {}, except for when they appear inside comments or strings. A line which contains an unbalanced bracket should be reported by a message such as the following sent to standard output:

'{' on line 15 has no matching '}'

		(

�PAGE�216�	C++ Programming	Copyright © 1998 Pragmatix Software

www.pragsoft.com	Chapter 11: The IO Library	�PAGE�215�

