
▼
▼
▼ ZDU Student Manual
JAVA
PROGRAMMING:
PART 1

Java Programming: Part 1

ISBN: 0-73725-349-5

Part number: ZDU56705

ACKNOWLEDGMENTS

Content Development

The content of this self-study guide is based on the training course "Java Programming,"
developed by Instruction Set, Inc. for its curriculum of instructor-led technical training.
This guide was designed and developed by an Instruction Set team of instructional
designers, course developers, and editors.

Administration

Vice President and General Manager of ZD University: Ed Passarella

Marketing Director: Risa Edelstein

Director, ZD University: George Kane

Senior Editor, Curriculum: Jennifer Golden

Project Director, Instruction Set: Laurie Poklop

Project Manager, Instruction Set: Sandy Tranfaglia

DISCLAIMER

While Ziff-Davis Education takes great care to ensure the accuracy and quality of these materials, all
material is provided without any warranty whatsoever, including, but not limited to, the implied war-
ranties of merchantability or fitness for a particular purpose.

Trademark Notices: ZD University and Ziff-Davis Education are trademarks and service marks of Ziff-
Davis Inc. Java Programming: Part 1 is a Copyright of Instruction Set, Inc. All other product names
and services used throughout this book are trademarks or registered trademarks of their respective
companies. The product names and services are used throughout this book in editorial fashion only
and for the benefit of such companies. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with the book.

Copyright © 1998 Instruction Set, Inc. All rights reserved. This publication, or any part thereof, may
not be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, storage in an information retrieval system, or otherwise, without the prior
written permission of Instruction Set, Inc., 16 Tech Circle, Natick, MA 01760, (508) 651-9085, (800)
874-6738. Instruction Set’s World Wide Web site is located at http://www.InstructionSet.com.
ZD University’s World Wide Web site is located at http://www.zdu.com.

Photocopying any part of this book without the prior written consent of Instruction Set, Inc. is a vio-
lation of federal law. If you believe that Instruction Set materials are being photocopied without per-
mission, please call 1-800-874-6738

CONTENTS
Java Programming: Part 1

LESSON 1: FUNDAMENTAL ASPECTS OF PROGRAMMING

Objectives . 2
What Is Programming? . 2

A Brief Overview of Software Development 3
Conceptual Differences Between Software and Hardware.4
Conceptual Differences Between the Developer and the User4
Programming Languages .4
Syntax vs. Semantics. .5

Types of Programming . 6
Console Versus Windows-Based Applications 6
Procedural Programming .7
Object-Oriented Programming .7
Event-Driven Programming .9
C/C++/Java Language Family .9

The Common Language Core . 10
Comments .10
Identifiers .11
Data Types .11
Expressions. .13
Input and Output .13

Program Structure . 14
Functions .15
Control Structures .16
Scoping. .19

Lesson Summary . 21
Exercise . 22

iv JAVA PROGRAMMING: PART 1
LESSON 2: THE JAVA ENVIRONMENT

Objectives . 28
Introduction . 28

Uses for Java .29
The World Wide Web (WWW). .30
HTML .30
Competing Technologies .31

Java Characteristics . 33
Java Portability .33
Advantages and Disadvantages. .34
Applications vs. Applets .34

Application/Applet Development . 35
Writing Source Code .35
Compiling an Application .37
Running the Application .38

Tools and Packages . 41
The javadoc and jdb Tools .41
Using packages .41
Searching for Classes .42
The import Statement. .43
Packages, Classes, Files, Directories. .44

Lesson Summary . 45
Review Questions . 46
Exercise . 47

LESSON 3: JAVA BASICS

Objectives . 50
Language Basics . 50

Comments .50
Data Types .51
Declaring Variables .53
Literals .54

Expressions . 56
Java Operators .56
Operations .57
Precedence and Associativity .61

Statements . 64
Control Structures .65

CONTENTS v
Scope . 70
Lesson Summary . 73
Review Questions . 74
Exercise . 76

LESSON 4: CLASSES IN JAVA

Objectives . 78
Java Is Object-Oriented . 78

Classes, Objects and Variables . 79
Instantiating a Class . 79
Class-Type Variables . 80
Operations on Class-Type Variables. 81
The null Value . 82
Member Access . 83

Invoking a Method . 83
Class Definitions . 84

Declaring Instance Variables . 86
Declaring Instance Methods . 87
The this Variable . 88
Class Definitions and Source Files. 89

Lesson Summary . 90
Review Questions . 91
Exercise . 92

LESSON 5: CLASSES IN JAVA—II

Objectives . 94
Method Overloading . 94
Constructors . 95
Encapsulation . 96
Access Specifiers . 96
Comparing Objects . 97
Class Variables. 97

Class Initialization . 98
final Variables . 99

Class Methods . 100
Finalization . 101
Lesson Summary . 102

vi JAVA PROGRAMMING: PART 1
Review Questions . 103
Exercise . 104

LESSON 6: ARRAYS AND STRINGS

Objectives . 106
Java Arrays . 106
Array Constants . 107
Using Arrays . 108
Copying Array Elements. 108
String Objects. 109
String Methods . 110

String Comparison .110
String Searching .112
Other String Methods .113

String Concatenation . 113
Converting Objects to Strings . 114
Converting Strings to Numbers . 114
Lesson Summary . 116
Review Questions . 117
Exercise . 118

LESSON 7: INHERITANCE

Objectives . 120
Introduction to Inheritance . 120

Example of Inheritance .121
Derivation Syntax .122
Effects of Inheritance .122

Protected Access . 123
Overriding Methods . 124

Dynamic Method Dispatching. .125
Polymorphism .126
The super Keyword .127
Final Methods and Final Classes .128

Constructor Chaining . 128
Inheritance and Finalization. 131
Abstract Classes . 131
Interfaces. 132

CONTENTS vii
The implements Declaration . 133
Casting Between Class Types . 133
Lesson Summary . 135
Review Questions . 136
Exercise . 137

LESSON 8: WRITING JAVA APPLETS

Objectives . 140
What Is an Applet? . 140

A "Hello, World" Applet . 140
The Applet Class . 141

Invoking an Applet . 142
Getting Applet Parameters . 143
Specifying Applet Parameters . 146

The Delegation Event Model—Action Events 146
The ActionEvent Class . 148
Adjustment Events . 149

The paint() Method . 151
The Graphics Class. 151
Java Fonts . 152

Selecting a Font . 153
Drawing Lines and Shapes . 154
Drawing with Color . 155
The Color Class . 156

Foreground and Background Colors . 157
Lesson Summary . 159
Review Questions . 160
Exercise . 161

APPENDIX A: HYPERTEXT MARKUP LANGUAGE (HTML)

HTML History and SGML . 164
Structure. 165
Head Elements . 165
Formatting: Blocks and Separators . 166
Formatting: Physical . 166
List . 167
Netscape List Extensions . 167

viii JAVA PROGRAMMING: PART 1
Links . 168
Images . 168
Forms . 169
Tables (HTML 3) . 170
Miscellaneous Netscape Extensions. 170
Java Applets . 171
Java Script . 171

APPENDIX B: JAVA SAMPLE

Usage and Copyright Notification . 174
The XYZApp.java Source. 175

APPENDIX C: JAVA CLASS HIERARCHY

Java Class Hierarchy . 186

ANSWERS: TO REVIEW QUESTIONS

Lesson 2 . 196
Lesson 3 . 196
Lesson 4 . 197
Lesson 5 . 197
Lesson 6 . 197
Lesson 7 . 198
Lesson 8 . 198

▼

▼
▼ LESSON 1

Fundamental Aspects of
Programming
OVERVIEW
Learning to use a programming language effectively requires a good
background in the principles of software development. The novice
programmer must visualize the software development process as a whole,
from requirements analysis through testing. The various types of
programming and their implications must be understood clearly. To
facilitate this, the several basic components of programming and
programming languages are explicated in this lesson by applying them to
an incrementally developed software example.

LESSON TOPICS
● What Is Programming?

● Types of Programming

● The Common Language Core

● Program Structure

2 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Explain the nature of software development.

➤ Differentiate between the different types of programming approaches.

➤ Understand the similarities and differences between C, C++ and Java.

➤ Edit, compile, and run simple console based applications.

➤➤➤ WHAT IS PROGRAMMING?

Before tackling Java programming, it is important to understand what pro-
gramming is and how it is used. People program to create software, which
can take many forms such as spreadsheet applications, Web applets, operat-
ing systems or corporate transaction databases.

Software consists of a series of instructions that tells hardware (or another
piece of software) to perform one or more actions. The programming lan-
guage is the set of syntax used to create those instructions and the rules asso-
ciated with their usage.

Like other natural languages, programming languages allow for some free-
dom and creativity in how a piece of software achieves its purpose. However,
unlike in spoken languages, programming must rigorously adhere to the
rules and constructs of the programming language to achieve precise results.
Machines cannot guess at meaning like humans can. Therefore, a good pro-
grammer must be very good at taking a problem or an idea in real world
human terms, and abstracting it into the constructs provided by the pro-
gramming language.

Programming generally refers to the coding portion of software development.
Good software development, however, requires several other steps in addi-
tion to coding.

LESSON 1: Fundamental Aspects of Programming 3

L
E

S
S

O
N

 1
A Brief Overview of Software
Development

To develop an application, the developer normally follows a series of steps
such as the following:

➤ Requirement Analysis

➤ Design

➤ Coding

➤ Testing

Requirement analysis is the process of determining the requirements of the
application. Typical application requirements might be, “to support a
spreadsheet-like interface” or “to calculate the precision of a result to 5 sig-
nificant decimal places.”

The requirement analysis phase is perhaps the most important step in the
development process. Application requirements need to be clearly under-
stood and articulated if the software is to be a success. Proper requirements
analysis will help avoid unnecessary corrective effort later in the process.

The design phase may occur at a high or low level. This step is responsible for
the overall structure of the application and how the parts of the application
interact.

Coding is the process of converting a design into a series of instructions
through a programming language. Source code is written and then put
through a code compiler, which translates the code in machine level instruc-
tions.

Before putting code into use, it needs to be tested to locate and remove
errors. Testing checks the application against the requirements, tests the
application functions with sample data, and verifies whether the user will
find the application easy-to-use, among other steps. When the application
behaves abnormally, corrections are made to the software and the testing
process resumes. When testing is complete the application is ready to use.

4 JAVA PROGRAMMING: PART 1
Conceptual Differences Between
Software and Hardware

Software is a series of instructions to a machine. The computer takes the
instructions and executes them to produce the intended results. Software can
be readily changed. It can be modified to make changes in the behavior of
the application. These changes are changes in the application itself.

The hardware that makes up the computer does not readily change. At the
heart of the computer is a central processing unit that executes machine level
instructions. These instructions are very low level and are not easy for the
average programmer to use. The actual set of instructions for any language is
fixed. However, they are recombined in different sequences that result in dif-
ferent behavior for different programs.

Conceptual Differences Between the
Developer and the User

The end user is the individual that executes an application for the purpose of
performing a task. The developer is the individual that creates the applica-
tion.

There are different types of developers. Some developers specialize in the
requirement analysis or design phase of a project. There are others who pri-
marily code and test an application. For small to medium size projects, one
developer or a small group of developers may perform all of these tasks.

In addition, there are different types of applications that require different
types of development expertise. Database intensive applications will require
the skills of a developer proficient in the architecture and mechanics of data-
bases, usually a specific database such as Oracle. Other developers will spe-
cialize in real-time applications that require carefully timed responses to
system inputs.

Programming Languages

A variety of different programming languages have evolved over time. Each
of these languages has its own unique syntax and semantics. Languages are
often categorized as either high level or low level, though this simple classi-
fication is not always adequate.

LESSON 1: Fundamental Aspects of Programming 5

L
E

S
S

O
N

 1
Most developers work with high-level languages such as COBOL, C or
C++, Java, and FORTRAN. High-level languages do not use instructions
that the machine understands directly; instead, they utilize commands that
are more intelligible for humans. Naturally, high-level languages are easier to
use. Few high-level language instructions are required to perform the same
task in a low-level language. While programmers using a high-level lan-
guage lose direct control of instructions to the machine, this is not a concern
for most developers.

Certain high-level languages are specialized. For example, there are lan-
guages designed to work directly with databases. Others are targeted towards
developing graphics applications.

Low-level languages have a one-to-one correspondence between a statement
in the language and a machine instruction. These languages are normally
called assembly languages and are unique to a specific computer. They pro-
vide a great deal of control over what can be done by a program but are very
difficult and tedious to use.

Some languages rely upon an interpreter instead of a compiler. The inter-
preter is an application that takes high level instructions for a given language
and simulates the execution of the instructions. The interpreted application
will produce the same results as if it were compiled. Interpreted code exe-
cutes slower than a compiled version of the application but interpreters pro-
vide several advantages over compilers, including better portability and more
powerful development features. Java is an example of a language that is fre-
quently interpreted rather than compiled. Any language may be compiled or
interpreted if a compiler or interpreter has been written for that language.

Syntax vs. Semantics

There are syntactic rules for each language that determine whether a given
command is in the proper form. Like rules that govern the form of an
English sentence, syntax rules of a programming language determine
whether the program is valid or invalid.

When a program violates the syntax rules of the language, the compiler will
generate an error message and will usually stop the compilation process. If
no errors are generated, the program is said to have compiled cleanly. The
program will run, but that does not necessarily mean that the program will
do what it is intended to do. The program must order instructions in such a

6 JAVA PROGRAMMING: PART 1
way that they produce the correct result. In other words, the program must
be semantically correct.

The semantics of an instruction is the meaning of the instruction i.e., what
the instruction does. Understanding this is fundamental to learning pro-
gramming languages. Fortunately, this is normally a straight-forward pro-
cess. High-level programming languages are designed with logical and
intuitive semantic structures.

➤➤➤ TYPES OF PROGRAMMING

There are several types of programming. This section, by no means exhaus-
tive, will discuss some of the key types:

➤ Console-based

➤ Windows-based

➤ Procedural

➤ Object-oriented

➤ Event-driven

Console Versus Windows-Based
Applications

Console based applications use an MS-DOS type user interface (often
called character driven) for input and output. The application is limited to
character-based displays of information. Frequently, the order of data entry
is dictated by the application. There are rarely windows of any nature present
in these.

Windows programming use extensive amount of graphics programming to
provide a more diverse range of input and output features. This graphics
programming may be hidden from the application developer but is sup-
ported by various operating system libraries.

Windows programming offers the developer freedom to use different
Graphical User Interface (GUI) controls to display or obtain information
from the user. Text Boxes can be used for textual information, lists can be

LESSON 1: Fundamental Aspects of Programming 7

L
E

S
S

O
N

 1
displayed in List Boxes, and mutually exclusive options can be provided
through Radio Buttons.

Console-based programming is easier than windows programming and does
not use as many system resources. Windows programming is more difficult
to learn and is resource intensive. However, given that most people expect
windows based applications these days, creating windows is often an applica-
tion requirement. The demand for windows has spurred significant advances
in computer processing power and windows development tools.

Procedural Programming

Procedural programming is used by almost all programming languages. Pro-
cedural programming focuses the step-by-step sequence of instructions that
are needed to perform a task. This approach has been needed because appli-
cations and computers are not capable of automatically deciding the appro-
priate sequence to use.

Non-procedural programming is characterized by the developer specifying
what needs to be done rather than how the task is to be performed. Proce-
dural programming involves instructing the system as to how to achieve a
task. While non-procedural languages exist, these languages are normally
limited to a small application domain and are limited in the range of tasks
that can perform.

Procedural programming is tricky for large applications. Large procedural
programs can become unwieldy and difficult to manage. There is often little
opportunity for abstraction. By abstracting a problem, it can be simplified.
The interfaces between parts of an application can become difficult to man-
age also. Programmers tend to spend a lot of time learning how to program
to these interfaces.

Most commonly used languages are procedural, including C, C++, Java and
FORTRAN. These languages have evolved over time but they all have pro-
cedural aspects to them.

Object-Oriented Programming

The evolution of object oriented programming brought about a paradigm
shift in how application problem sets are modeled for development. In a tra-
ditional procedural language like C, things represented in a banking applica-
tion like account number, customer, and balance dissolve into a series of

8 JAVA PROGRAMMING: PART 1
functions and variables. In object-oriented programming, objects are defined
and maintained that represent these real things that are part of a problem
statement.

Just as things in real life have characteristics and actions associated with
them, objects possess properties, methods, and events. Each of these is directly
associated with the object. For example, a bank account object would have
the properties of account number and balance. These properties are tied
directly to an instance of Bank Account, and do not exist in the program,
other than as a part of Bank Account.

Methods are actions performed against the object. For example, the bank
account object may have a deposit method that is used to add money to an
account. Events are actions that take place under specific conditions. The
bank account might have a negative balance event that would occur when-
ever the balance became negative. The programmer would code this event to
take appropriate action when this event occurs.

Object-oriented languages support the definition of a class that represents
an object and the actual allocation of memory for the object. Classes are the
generalization of a specific object: Customer is a class, and Kelly Smith is an
object that is an instance of the class Customer. C++ and Java are examples
of object-oriented languages (note that they are also procedural languages).
The coding used in support of methods and events is procedural.

Object-oriented languages offer a number of benefits. Systems modeled in
objects are easier to maintain and manipulate, because properties and meth-
ods can be altered for a class without affecting the rest of the system.
Object-oriented programming also supports reuse of code: once developed,
a class can be utilized as often as necessary. For instance, a programmer
could use an existing Button class in an application without necessarily
understanding all of the code that supports the class. In addition, classes
may inherit properties from more general classes, so that the properties do
not have to be redefined for each sub class.

An object-based language, as opposed to an object-oriented one, is a language
that supports the creation of classes but does not support inheritance, a cru-
cial programming feature which facilitates the creation of related types from
existing types. Visual Basic 5.0 and its earlier versions are an example of an
object-based language.

LESSON 1: Fundamental Aspects of Programming 9

L
E

S
S

O
N

 1
Event-Driven Programming

Event driven programming is frequently used to support Windows pro-
gramming. The operating system will monitor the system for events and
then send these events to the appropriate application. The application’s reac-
tion is based on the nature of the event. Keyboard input and mouse move-
ments are the most common events.

An event-driven application is structured around the process of receiving
and reacting to events. Unlike in procedural programming, where the pro-
grammer dictates the order of information received, event-driven applica-
tions generally allow the user to choose the order in which information is
entered.

For example, an application may have an entry field for Zip Code. In an
event driven application, the Zip Code field will be one in a series of address
fields in a dialog box. The user can use the mouse or tab key to jump around
to different fields and fill them in any order. The application’s structure must
account for the fact that it can not anticipate when Zip Code will be filled,
but rather must react when the event occurs.

Object-oriented programming is well suited for event driven applications.
Objects can have events assigned to them, which the application can moni-
tor. Traditional procedural languages such as C, do not support event driven
programming very well. Java, in particular, is designed to address events
explicitly and has a well defined event model to create and handle events.

C/C++/Java Language Family

C was developed to meet general system programming needs. It was quickly
adapted for general use and found widespread acceptance. C is a high-level
procedural language that has many low-level features. These features help to
make it versatile and efficient. However, many of these features give it a rep-
utation for being cryptic and hard to maintain.

C++ extends the C language to provide object-oriented features. The lan-
guage is backward compatible with C, and code from the two languages can
be used with each other with little difficulty. C++ has found quick accep-
tance and is supported by a number of pre-built specialized classes.

Java can be considered the third generation of the C/C++ family. It is not
backward compatible with C/C++ but was designed to be very similar to
these languages. The creators of Java intentionally left out some of the fea-

10 JAVA PROGRAMMING: PART 1
tures of C/C++ that have been problematic for programmers. Java is strongly
object-oriented. In fact, one cannot create Java code that is not object-ori-
ented. Java’s portability is a key advantage and is the reason why Java is often
used for Web development.

➤➤➤ THE COMMON LANGUAGE CORE

There are several programming features common to most programming lan-
guages. These include the definition of identifiers, expressions, and condition
control statements. These common core features are discussed and illustrated
below with sample code where appropriate.

Comments

Comments are sections of a program that are ignored by the compiler and
are used to document the program. Documentation is important in that it
provides information about the program that is useful in the maintenance of
the program.

Software applications generally require periodic revision—the application
requirements change, errors are corrected or new features are added. Good
documentation aids the programmer in identifying the structure and pur-
pose of each section of code. Often, the person modifying the code is not the
same person that wrote the code, making the use of good comments critical.

The only comment that is common to C, C++ and Java is the multi-line
comment. The comment begins with a /* and ends with a */ . Everything
between these two sets of symbols is treated as a comment and is ignored by
the compiler.

/* This is a comment
 spread across several lines */

/* This comment occurs on a single line */

i = i + 1; /* This comment begins on the same line as
a statement */

LESSON 1: Fundamental Aspects of Programming 11

L
E

S
S

O
N

 1
An alternative style available in C++ and Java uses two forward slashes (//) to
indicate that everything from that point until the end of the line is a com-
ment.

Identifiers

Identifiers are used to temporarily hold information. For example, to com-
pute the pay for an individual, the numbers of hours worked is multiplied by
the pay rate. Identifiers (the name of the variable listed on the left) are
needed for these values.

Identifiers have certain rules for their creation. Generally, the identifier must
begin with a letter and is followed by letters, digits, and perhaps another
character, such as the underscore character.

The assignment operator, which is the equal sign (=), is used to modify the
value assigned to an identifier. Simply using the identifier as part of some
operation will retrieve its current value. The value stored in an identifier can
change.

Data Types

There are different types of identifiers based on different needs. If simple
counting numbers are needed then there is the integer data type. If a number
with decimal points is required then the float data type is used. The common
data types are listed in Table A.

i = i + 1; // Alternate comment notation

hours = 40;
payrate = 12.50;
pay = hours * payrate;

TABLE A. Data Types

Data Type Value Examples

int Positive and negative inte-
gers

127
-6

float Single precision numbers 6.42

12 JAVA PROGRAMMING: PART 1
Note that very large numbers or very precise numbers use a different data
type than normal real numbers. The boundary between single and double
precision numbers is defined differently for each language.

String data is handled differently between C/C++ and Java. C and C++ use a
pointer to the address of a string of characters that is terminated by a zero.
Java uses a built-in data type String to hold strings.

Before an identifier can be used, it must be declared. Specifying the type of
data followed by the identifier’s name does this:

Most languages provide the developer with the ability to define more com-
plex data structures based on primitive data types. C and C++ do this using
the struct statement.

An actual identifier is declared as other primitive types are declared.

double Double precision numbers
(numbers with a very
large value or # of digits)

137.5426246321
5.42 x 1045

char Single characters h

char* or String String data (any series of
characters)

widget
42XXTALL

int i;
float pay;
int hours;
double radius;

struct Employee {
char*name;
int age;
double payrate;

};

struct Employee boss;

TABLE A. Data Types (continued)

Data Type Value Examples

LESSON 1: Fundamental Aspects of Programming 13

L
E

S
S

O
N

 1
Expressions

Expressions are needed to perform computations. An expression consists of
an operator and one or more operands. Operators specify the action to be
performed, such as addition or multiplication. Operands are the data acted
upon. Statements are separated by semicolons and consist of one or more
expressions. In the following example, the assignment operator, equal sign,
and the addition operator are used to add two numbers together and assign
the sum to a third identifier.

There is a predefined order in which expressions are evaluated. This is
known as the order of precedence. For example, addition always occurs before
assignment (+ happens before =). There also exists rules of associativity that
specify the order in which two expressions of equal precedence are to be
evaluated. These rules can be overridden through the use of parentheses. For
addition, evaluation is done left to right. The following two statements are
equivalent:

Input and Output

Getting information into a program and then writing it out are important
aspects of programming. Data can be read from a number of sources: key-
board, mouse, files, databases, etc. Data can be outputted to the monitor, to
various files, and to a database, among other places.

The syntax of Input/Output (I/O) is mostly language specific. C and C++
rely upon include files that contain specialized code to perform I/O. Java
uses a series of classes to do similar I/O actions. Input statements are not
addressed here, however, output examples are provided.

a = b + c;

a = b + c + d;

a = b + (c + d);

14 JAVA PROGRAMMING: PART 1
In C, the printf statement is used. It has two major parts: a format speci-
fication that is enclosed with double quotes and a list of data values to be
printed. The following shows printing out pay information:

The %f fields within the format string are “place holders” for the output val-
ues to be printed. The text printed will be that which is inside of the double
quotes, with the %f field replaced by the values stored in the variables in the
parameter list. The three %f fields are replaced with the values stored in
hours , payrate and pay. The \n is used to cause a carriage return and a new
line to be printed. Output goes to standard output, which is normally the
monitor. For floating values, a %f file is used. For other data types, different
place holders are used.

In C++, insertion operators (<<) are used to display the same information.

cout represents standard output. Java uses a println method to display
output. This same line would be coded as:

➤➤➤ PROGRAM STRUCTURE

The structure of a program is an important aspect of the overall design of the
application. A program is typically structured as functions that logically par-
tition the program into manageable and comprehensible units. A function is
a block of code that has an optional return value, a name, and a set of argu-
ments. Arguments are identifiers that are passed to the function.

printf(“Hours worked: %f Payrate: %f Pay: %f\n”,
hours, payrate, pay);

cout << “Hours worked: “ << hours << “ Payrate: “
<<payrate << “ Pay: “ << pay;

System.out.println(“Hours worked: “ + hours + “
Payrate: “ + payrate + “ Pay: “ + Pay);

LESSON 1: Fundamental Aspects of Programming 15

L
E

S
S

O
N

 1
Functions

The first function executed when an application begins is the main func-
tion.

Other functions can be declared and then invoked as needed. The Com-
putePay function accepts two arguments (hoursworked and rate)
and then returns the resulting pay.

The identifiers for hours and payrate are declared in the main function.
They are then initialized by assigning them values. The printf statement
calls the ComputePay function and is passed a copy of hours and
payrate to the hoursworked and rate identifiers respectively. These
are used to compute the pay and are stored in the identifier result. The result
is returned using the return statement, whose value is then used as part of
the printf statement in the main function.

The printf statement is actually part of a library. Libraries contain differ-
ent functions that programmers find useful. To use a function from a library,
the library must be included within the program. With C and C++, this is

main () {
/* Body of the function */

}

float ComputePay(float hoursworked, float rate)
{

float result;
result = hoursworked * rate;
return result;

}

main () {
float hours;
float payrate;
hours = 40;
payrate = 12.50;
printf(“The pay is: %f\n”, ComputePay(hours,

payrate));
}

16 JAVA PROGRAMMING: PART 1
accomplished using the #include directive. For the previous program to
compile cleanly, the following #include directive must be added to the
top of the file:

The creation of a program is an abstract process. It requires an understand-
ing of the nature of the problem to be solved, an understanding of how the
problem can be solved, knowledge of the language used to implement a solu-
tion, and the creativity to put it all together.

A general approach to tackling a programming problem is:

➤ Determine what needs to be done.

➤ Determine how to do it (i.e., write the code).

➤ Determine where to place the code.

In the pay computation example, only the hours worked and payrate are uti-
lized. The problem becomes more complex if other factors have to be con-
sidered, such as overtime and insurance deductions.

Creating a successful program for this example requires an understanding of
both the syntax and semantics of the solution. Semantically, the proper pro-
cess for computing pay must be known and understood. Syntactically, these
procedures must be translated into the proper coding functions, and the I/O
display capabilities of the language must be utilized properly.

Each of the code sequences developed must be placed in the right location in
the program. Functions are used to break a program up into more manage-
able units. There is frequently more than one way to partition a program.
The right way depends on a number of factors: size of the program, effi-
ciency, portability, etc.

Control Structures

For programs containing more than just the simplest logic, control state-
ments are needed to control the flow of execution of the program. For exam-
ple, tests may be needed to differentiate between hourly and salaried
employees. Loops may be needed to process more than one employee at a
time.

#include <stdio.h>

LESSON 1: Fundamental Aspects of Programming 17

L
E

S
S

O
N

 1
The block statement is a commonly used control statement. It logically
groups related statements together. The block statement is necessary when
the control statement’s syntax expects a single statement but multiple state-
ments are what are required. The block statement is a single statement
that meets the syntax requirements and also allows multiple statements to be
included at the same time. A block statement is nothing more than one or
more statements included between an open curly brace ({) and a close curly
brace (}).

The if statement tests an expression. Based on a true or false evaluation of
the expression, branches to one of two places.

The following illustrates testing for overtime:

The switch statement is like a multiple-branch if statement. The expres-
sion tested is an integer and branches are made based on the integer’s value.
The case keyword is followed by a constant. If the value of the integer
expression matches the constant, then the branch is made to that location.
The break statement causes control to flow to the end of the switch
statement; otherwise, it will flow through to the next case statement. The

{
/* A block statement */

}

WARNING

It is possible to have
one if statement
nested within
another if state-
ment. When this hap-
pens, you should be
careful about know-
ing which if
matches up with
each else . The else
matches with the
nearest if . When
unsure, use state-
ment blocks with {}
to specify how the
else should be
matched.

if (expression)
statement; /* Branch here if true */

else
statement; /* Branch here if false */

if (hours > 40)
pay = 40 * payrate + (hours – 40) * 1.5 *

payrate;
else

pay = hours * payrate;

18 JAVA PROGRAMMING: PART 1
default clause is optional and will catch anything that is missed by the
previous case clauses .

The following branches based on an age:

Looping statements cause a sequence of statements to be executed multiple
times. This construct is useful for processing multiple lines of input, initial-
izing identifiers, summing values, etc. The two most common looping state-
ments are the for loop and the while loop.

The for loop uses an identifier as a counter and a test condition. It has
three parts: initialization, test and termination. Each of these parts is sepa-
rated by a semicolon. In the following example, the numbers from 1 to 10

switch (integer) {

case 1:
statement;
break;

case 2:
statement;
break;

…
default:

statement;
}

WARNING

It is a common error
to forget the break
statement. This will
result in the execu-
tion continuing on to
the next statement
instead of falling out
of the switch state-
ment.

int age;
…

switch (age) {

case 1:
printf(“The age is 1\n”);
break;

case 2:
case 3:

printf(“The age is either 1 or 2\n”);
break;

…
default:
printf(“The age is not 1, 2 or 3\n”);
}

LESSON 1: Fundamental Aspects of Programming 19

L
E

S
S

O
N

 1
are printed along with their square. The i++ is a shorthand notation that is
allowed to represent the statement, i = i +1; .

The %d field is used with integers.

The while statement has a test expression and a body. The expression is
tested and as long as it evaluates to true, the body is executed. The following
is the equivalent of the previous for loop.

Scoping

Scoping refers to the bounds of use of a particular identifier. Identifiers may
only be used within the function in which they are declared. Consider the
example again, in which the identifiers named pay and rate have been
declared in both the main function and the ComputePay function.

for (i=1; i<=10; i++) {
printf(“Number: %d Square: %d\n”, i, i * i);

}

i = 1;
while (i <= 10) {
printf(“Number: %d Square: %d\n”, i, i * i);

i++;
}

float ComputePay(float hours, float rate) {
float pay;
pay = hours * rate;
return pay;

}

main () {
float hours;
float payrate;
hours = 40;
payrate = 12.50;
printf(“The pay is: %f\n”, ComputePay(hours,

payrate));
}

20 JAVA PROGRAMMING: PART 1
While the identifiers are given identical names in main and ComputePay ,
they should be distinct sets of identifiers. When an identifier is declared, it is
allocated memory in main memory.

In the main function, memory is allocated for the identifiers hours and
payrate . In the ComputePay function, memory is allocated to the iden-
tifiers hours , rate and pay . All five identifiers have separate areas of
memory allocated to them. The values of the hours and payrate identi-
fiers are passed to the ComputePay hours and rate identifiers respec-
tively.

The scope of the hours and payrate identifiers is within the main func-
tion. That is the only place that these identifiers can be used, since they were
declared within the main function.

The scope of the ComputePay hours , rate , and pay identifiers is
within the ComputePay function, since they were declared within that
function. Attempting to use the pay identifier within the main function
would generate a compile-time error.

LESSON 1: Fundamental Aspects of Programming 21

L
E

S
S

O
N

 1
➤➤➤ LESSON SUMMARY

In this lesson you have learned that

➤ Programming refers to the coding portion of software development.

➤ Software development involves a series of steps—requirement analysis,
design, coding, and testing.

➤ C, C++, Java, etc. are considered high-level languages as these require
fewer instructions to perform a given task than low-level languages.

➤ For a program to be successful, it has to be both syntactically and
semantically correct.

➤ Console based programming is character driven and is easier to use
than Windows based programming which is resource intensive.

➤ Procedural programming specifies step-by-step sequential instruction.

➤ Object-oriented programming supports objects which represent real
world concepts that are part of a problem statement.

➤ Windows programming is event driven programming—the common
events being keyboard input and mouse movement.

➤ Comments are those sections of a program that the compiler ignores,
but useful as signposts for programmers.

➤ int , float , double , char , and String are some of the data
types that programmers use.

➤ Expressions, used to perform computations, consist of an operator and
one or more operands.

➤ A function is a block of code that has an optional return value, a name,
and a set of arguments.

➤ Control statements are needed to control the flow of execution of a pro-
gram. The block statement is a common control statement.

➤ Looping causes a sequence of statements to be executed multiple times.

➤ Scope refers to the bounds of use for a particular identifier.

22 JAVA PROGRAMMING: PART 1
1. Type in the pay computation example as shown below and verify that it
works properly.

2. This exercise walks through the construction of a program that reads in
specifications for a geometric figure, tests for valid input, and then com-
putes and displays the area of that figure. You will need to add additional
code to complete the exercise. Type in the first part as shown below.
This section reads in a double number and is provided because Java does
not read in numbers in as easy a manner as other languages.

EXERCISE

public class Exercise1 {

static float ComputePay(float hours, float rate) {
float pay;
pay = hours * rate;
return pay;

}

public static void main (String argv[]) {
float hours;
float payrate;
hours = 40f;
payrate = 12.50f;
System.out.println("The pay is: " +

ComputePay(hours, payrate));
}

}

LESSON 1: Fundamental Aspects of Programming 23

L
E

S
S

O
N

 1
The main method follows:

The identifie, buffer[0] , is used to hold the type of geometric figure
selected by the user. The input statement, System.in.read(buffer) ,

import java.io.*;

public class Exercise2 {

static double getDouble() throws IOException{
double d = 0.0;
byte buffer[] = new byte[8];
String response;

System.in.read(buffer);
response = new String(buffer,0,buffer.length-2);
try {

d = Double.valueOf(response).doubleValue();
return d;

}
catch (NumberFormatException e) {return d;};

}

public static void main (String argv[]) throws
IOException {

/* Declare identifiers */

byte buffer[] = new byte[8];

/* Read in geometric shape type */

System.out.print("Enter Geometric Type (r, t or c):
");

System.in.read(buffer);

/* Determine geometric type, get size information
and compute ares */

/* Display area and perimeter */

}
}

24 JAVA PROGRAMMING: PART 1
is used to read in data from standard input. Declaration will need to be
added after the comments as explained below.

The three types of shapes to be processed are: rectangle, triangle and circle.
Add declarations for the identifiers in Table B:

Next, add a switch statement that selects among the three options:

➤ r—Rectangle

➤ t—Triangle

➤ c—Circle

The basic structure of the switch statement will be similar to the follow-
ing:

Within each case statement, add code to read in the appropriate values
(height and width for a rectangle) and then compute the area. Use the fol-
lowing format to read in a float data type:

TABLE B. Geometric Shape Identifiers

Identifier Data Type

length float

width float

radius float

area float

switch (buffer[0]) {
case (byte)'r': /* Rectangle selected */

break;
case (byte)'t': /* Triangle selected */

break;
case (byte)'c': /* Circle selected */
}

System.out.print(“Enter Height:”);
height = getDouble();

LESSON 1: Fundamental Aspects of Programming 25

L
E

S
S

O
N

 1
Next, add statements to verify that the values entered by the user are posi-
tive, non-zero numbers. If they do not meet this criteria, use the value 1.0
instead. The else part of the statement can be a single semicolon.

In the last section of the program, display the area of the geometric figure.

if (height <= 0)
height = 1.0;

else
;

▼

▼
▼ LESSON 2

The Java Environment
OVERVIEW
Java as an object-oriented language was designed from the outset to be
platform independent, robust, and secure. Many of the concepts and
syntax of Java are borrowed from C++, another object-oriented
language. Java can be used to produce two types of programs. One type is
an application, which is a standalone program that can be run by the
Java interpreter. The other type is an applet, which is a mini-program
that is typically built into World Wide Web pages.

LESSON TOPICS
● Introduction

● Java Characteristics

● Application/Applet Development

● Tools and Packages

28 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Describe the characteristics of Java environment.

➤ Edit, compile, and run Java programs and applets.

➤ Contrast Java with other programming languages.

➤➤➤ INTRODUCTION

Java (originally called Oak, until it was discovered that another company
used Oak as a trademark) was developed at Sun MicroSystems in a forward-
looking project to develop a new programming language. The primary
design goal of Java was to provide code for programs that would run on
many different hardware platforms. The second design goal was to produce
robust programs—programs that would have as few bugs as possible. The
third design goal was for the language to be easy to learn and use. Since the
world of computers and application development was already populated with
programmers who knew C++, the syntactical model of C++ was chosen
along with some characteristics of Smalltalk. The effectiveness of Java as a
programming language can be illustrated by considering how Java reduces
bugs:

➤ The most common source of difficult-to-track bugs in traditional pro-
gramming languages is improper handling of dynamically allocated
memory. These memory leaks are caused by programmers allocating
memory, and then losing track of its location or simply not releasing it.
Java handles all memory management issues on its own, rather than
leaving them to the programmer. Java allocates memory when an
object is instantiated and releases it automatically when the object goes
out of existence, through a process called garbage collection.

➤ Another frequent source of problems is out-of-range array indexing. C
and C++ do not check for these errors, but Java does.

➤ Java avoids the syntactical headaches that result from multiple inherit-
ance, which is an object oriented feature (of controversial value) in
C++. Java uses interface files to provide most of the benefits of multi-
ple inheritance (and polymorphism) while avoiding their problems.

LESSON 2: The Java Environment 29

L
E

S
S

O
N

 2
Uses for Java

Though it was originally intended as a language for programming embedded
systems, Java has become very popular because of its natural applicability to
programming network software for the World Wide Web (WWW). Java is
best known as a language for programming applets. An applet is a “mini-
application” that runs within the context of a larger application, such as a
network browser.

For a program to be usable across such a diverse network as the World Wide
Web, it must be portable; i.e., it must be able to run on many different sys-
tems. Java is designed to be portable.

Any software downloaded across a network must be considered untrustwor-
thy software, suspect for viruses and other malicious programming. To over-
come this liability, Java language and Java API (Application Program
Interface) have built-in security features that provide safety from such
attacks.

The structure of a Java program is modular. Instead of being bound into a
single file, a Java application exists as a set of cooperating files, each file rep-
resenting a discrete module of the program. This has a great advantage.
Rather than downloading an entire program before running it, the user may
download only those Java modules that are needed. To upgrade a Java pro-
gram, the user may replace only those modules that have changed. This
dynamic nature of the language also speeds application development.

Finally, the Java API includes a wide set of facilities for network communi-
cations. The Java programmer can readily create network connections and
either work at the data stream level or at the higher network protocol level.
The programmer can create network applets, agents, and servers in Java. All
these features make Java an ideal platform for network software develop-
ment.

It is important to note that though Java is ideally suited for the creation of
network software, it is not limited to network software applications. The
Java API also includes facilities for graphical user interfaces (GUI’s), file
access, parsing, and is rapidly expanding to include database access, remote
procedure calls, component software, and other features. Java is a platform
for general purpose application development.

30 JAVA PROGRAMMING: PART 1
The World Wide Web (WWW)

Java is an outstanding language for developing applications that will run on
the WWW. The WWW, which uses a client server framework, is a virtual
network built on top of the Internet.

➤ The client is called a browser, which requests data from servers. Cur-
rently, the most popular browsers are Netscape Navigator and
Microsoft Internet Explorer.

➤ The server is called a Web server. A Web server responds to requests by
sending Hypertext Markup Language (HTML) documents back to
the browser which are then displayed for the user.

Web servers can send many different file types (text, graphics, audio, etc.) to
requesting browsers as part of an HTML document. Web servers typically
run on systems using Unix or Windows NT. Browsers can request informa-
tion from any Web server.

Web servers and browsers use the HyperText Transfer Protocol (HTTP) to
communicate with one another. This protocol enables a browser to request
data or other resources from a Web server. HTTP also enables a server to
describe the file types that it can send to a browser. Although an under-
standing of HTTP may be of interest to a programmer, it is not necessary
prerequisite for writing Java applications.

HTML

Web servers send HTML documents to browsers. In other words, the data
that servers provide to browsers is always coded in the HTML language.
Browsers know how to display HTML documents that describe words,
graphics and audio.

HTML uses a different model for describing the layout of information than
most popular word processors do. Word processors like Microsoft Word or
FrameMaker give the writer complete control over the way text is laid out.
HTML gives the writer only partial control, turning the remainder of con-
trol over to the browser. For example, when putting a second level header
into a FrameMaker template, the writer can control the font to be used, the
exact position in which the header will be written, and dozens of other

LESSON 2: The Java Environment 31

L
E

S
S

O
N

 2
details. By contrast, to put a second level header into an HTML document,
the writer merely writes:

and leaves the exact formatting details (font, position, etc.) to the browser.
The current “official” HTML standard is Version 3.2. It is maintained by
the WWW Consortium.

HTML is a rapidly evolving language. Unfortunately, not all browsers sup-
port the same HTML tags. Netscape, for example, continues to supplement
standard HTML with many extensions of its own.

HTML tags describe not only text but graphic and audio information as
well. For instance, the following HTML directive tells the browser to dis-
play a graphics image file named logo.gif :

HTML tags also describe the hierarchical organization of the document for
example:

➤ <HTML> - HTML document tag

➤ <HEAD> - Head section tag

➤ <BODY> - Body section tag

Finally, HTML also contains directives that tell the browser to run a partic-
ular Java applet. An overview of HTML tags can be found in Appendix A.

Competing Technologies

Just a few years ago, C++ was hailed as the computer language that would
revolutionize computer programming and lead to bug-free programs. Unfor-
tunately, C++ was rather hard to learn and ended up creating many bug-
filled programs. Nevertheless, although C++ was hardly the first object-ori-
ented language, it did expose many programmers to object-oriented pro-
gramming. Many programmers now feel that while the future belongs to
object-oriented programming, C++ is not the best vehicle for it. Java’s
designers took the best features of C++ while rejecting its bad features.

<H2>The Header Itself</H2>

32 JAVA PROGRAMMING: PART 1
Languages such as Visual Basic do a terrific job designing GUIs. Yet, Visual
Basic lacks many important Java features that are needed for WWW appli-
cations. Microsoft has introduced ActiveX technology which can be used
with VBScript (a subset of Visual Basic) to provide many of the same user
interaction features as Java applets. VBScripts are embedded in HTML doc-
uments between <SCRIPT> and </SCRIPT> tags.

In spite of its name, JavaScript has nothing to do with Java. JavaScript is an
object-based language which was developed at Netscape (a browser vendor).
It is used to give dynamic capabilities to HTML documents, including cli-
ent-side user interaction. JavaScript programs are not compiled, but are
interpreted as part of the HTML document. JavaScript source code is
embedded in an HTML document between the <SCRIPT> and </
SCRIPT> tags. JavaScript can do many of the things that Java can do. How-
ever, JavaScript does not support the rich set of data types that regular Java
does.

Common Gateway Interface (CGI) vs. Java

The Common Gateway Interface (CGI) is a specification that defines how a
browser sends data to Web servers. It is intended for use by separate server-
side programs. CGI scripts are programs written to conform to this specifica-
tion. That is, CGI scripts are external programs, invoked by a Web server,
that receive information from the server and pass information back to it.

CGI scripts are usually written in an interpreted language such as Perl or
Visual Basic, although they can be written in other languages such as C or
C++. CGI scripts can do both simple tasks, like printing the number of users
who have logged onto a particular Web site and more complex processing
which involves access to sophisticated databases.

Programmers use CGI scripts to create dynamic HTML documents with
server side processing. The Web server defines a set of environment variables
that CGI scripts use to receive data from the browser. The data is then pro-
cessed and a response sent back to the browser in the form of an HTML
document, as shown in Figure 1.

LESSON 2: The Java Environment 33

L
E

S
S

O
N

 2
FIGURE 1
Interactivity with CGI scripts

Java applets are stored on the Web server’s machine but run on the browser’s
machine. Therefore, the Web server must download the Java applet to the
browser. Figure 2 illustrates this.

FIGURE 2
Interactivity with Java

➤➤➤ JAVA CHARACTERISTICS

Java Portability

A programming language is said to be portable if source code written in that
language is readily compiled and run on a platform other than the originally
intended target platform. The C programming language is portable in this
sense, though most applications written in C rely on interfaces specific to a
certain operating system or windowing system. The result of compiling C
source code is machine code that runs on a particular type of processor.
Thus, when we say C is portable, we refer to the source code, not the com-
piled binary code.

The Java system is not merely source code portable—it is binary portable.
The result of compiling Java source code is Java byte code that can be run
only by a Java Virtual Machine (JVM). The JVM is usually an interpreter, a
program that executes the byte code instructions as it reads them. The JVM
is source code portable; that is, designed to run on many different platforms.

Browser Web server CGI Script

Server machineBrowser machine

1.

4.

2.

3.

Browser Web server

Java applet

Server machineBrowser machine

1. Browser requests

2. Download
3. Java applet runs

34 JAVA PROGRAMMING: PART 1
Every JVM on every platform conforms to the same specifications. So any
compiled Java program can run on any platform on which a JVM is avail-
able. Once the JVM has been ported to a new system, any pure Java program
can be run on that system.

The Java language and JVM are standard and portable. The Java API, a set
of libraries that accompanies every Java installation, is also standard and por-
table. When the JVM is ported to a new system, so are the standard Java
libraries. This further guarantees that any compiled Java program runs on
any platform on which a JVM is available.

Advantages and Disadvantages

Java programs are generally more robust than C++ programs because Java’s
memory management is more efficient and cleaner. This also makes Java
programs more secure. But because Java is interpreted, Java programs tend to
run more slowly than C++ programs. Compared with other scripting lan-
guages such as Perl and Tcl, Java is faster, more powerful, and more robust.

If Java terminals become more commonplace, most of the speed disadvan-
tages that they now suffer from may disappear. Java terminals may well
become like X-terminals, (inexpensive machines with minimal local storage,
retrieving class software as needed). Java terminals fall under the nebulous
category of Network Computer (NC). As more and more quality just-in-
time compilers become available for PCs, it is possible that an NC may not
really possess any speed advantage.

Applications vs. Applets

There are two categories of Java programs:

➤ Java applications (which run with a Java interpreter)

➤ Java applets

Java applications are stand alone programs in the traditional sense. Java
applets are programs designed to be run from browsers such as Netscape
Navigator and Sun’s HotJava. The focus of an applet is the WWW,
although several other tools (such as appletviewer) can also run Java
applets. Applets are normally embedded within HTML documents.

An applet runs in a context that provides windowing support, multi media
support (graphics, sound, etc.) and network support.

LESSON 2: The Java Environment 35

L
E

S
S

O
N

 2
Java application source code looks somewhat different from Java applet
source code. For example, Java programmers must write a method named
main for every application, but may never do so for an applet. Despite the
differences, it is fairly easy to convert Java application source code into Java
applet source code.

➤➤➤ APPLICATION/APPLET DEVELOPMENT

Steps to create a Java application:

1. Using any text editor, write Java application source code.

2. Compile the Java source code. When this is done, the Java compiler cre-
ates a byte-code file.

3. Invoke the Java interpreter. It will run the byte-code file.

4. Debug as necessary, by invoking the Java debugger (jdb).

Steps to create a Java applet:

1. Using any text editor, write Java applet source code.

2. Compile the Java applet source code. The compiler creates a byte-code
file.

3. Create an HTML document to contain the applet.

4. Invoke the byte-code file by specifying it in an HTML document and
then loading the HTML document.

5. Debug as necessary.

Writing Source Code

Writing Java source code is similar to writing source code in any other lan-
guage. That is, an ASCII text editor is used to either add source code or
modify it. Java source code is dealt with in greater detail in subsequent les-

36 JAVA PROGRAMMING: PART 1
sons. This lesson discusses two important features common to all Java appli-
cations discussed:

➤ As in C++, Java application source code is organized into classes. For
example, the class in the following example is named HelloWorld .

➤ Every Java application must contain a method named main . As in a C
program, the main method marks the application’s starting point.

Following is a simple Java application. The source code would be entered
into a file named HelloWorld.java :

The file containing Java source code must have the filename class-
name.java , where classname is the name of the class in your Java source
code.

An ASCII text editor is used to write Java applet source code, as well. Writ-
ing applet source code is discussed in detail later on. A few common features
of all Java applets are discussed below:

➤ As in C++ and Java applications, Java applet source code is organized
into classes. For example, the class in the example below is named
HiWorld .

➤ Unlike Java applications, Java applets must not contain a method
named main . This is because a “behind-the-scenes” code already con-
tains the main method.

➤ Most Java applets contain a method named paint . This method
defines the actual appearance of the text and graphics that the Java
applet will output.

import java.io.PrintWriter;
class HelloWorld {

public static void main(String[] args){
System.out.println(“Hello World!”);

}
}

NOTE

The paint method
will be automatically
called by the Java
environment when
the applet needs to
be drawn.

LESSON 2: The Java Environment 37

L
E

S
S

O
N

 2
Below is the applet version of HelloWorld :

Compiling an Application

To compile source code from a shell prompt, run the compiler with:

The Java compiler (javac) will create a byte-code file named:

If a Java development environment is being used, the program is compiled
by invoking a menu function rather than by running Java directly. The folder
containing javac must be in the programmer’s PATH environment vari-
able.

To compile HelloWorld.java , type:

This creates a file named HelloWorld.class.

If the source code file contains more than one class, the Java compiler will
create a separate byte-code file for each class

public class HiWorld
extends java.applet.Applet
{

public void paint(java.awt.Graphics g)
{
 g.drawString(“Hi, World!”,50,25);
}

}

javac name.java

name.class

NOTE

Unlike traditional
compilers, javac
creates a machine-
independent file as
the output which
gets interpreted by
the Java virtual
machine. Thus the
contents of
name.class will be
the same whether
you compiled in Unix,
Windows, or any
other OS.

javac HelloWorld.java

38 JAVA PROGRAMMING: PART 1
For example, given a source code file containing three classes, the Java
compiler will generate three byte-code files, named:

➤ class1-name.class

➤ class2-name.class

➤ class3-name.class

Java applet source code is compiled the same way Java application source code
is compiled.

To compile the source code from a shell prompt, the compiler has to be run
with:

The Java compiler (javac) will create a byte-code file named:

If a Java development environment is being used, the applet can be compiled
by invoking a menu function rather than by running Java directly.

Running the Application

A Java application is basically run by invoking the Java interpreter on Java
byte-code.

Java byte-code files have the filename name.class , where name is both
the filename and the name of the code module it contains.

To run the program from a shell prompt, type:

Note that no suffix is used. The interpreter will assume the suffix.class
on the filename.

Remember that one of the goals of Java is to create programs that can run on
any platform. Therefore, the Java compiler generates platform independent
byte-code rather than platform dependent machine code. Then, to run a

javac name.java

name.class

java name

LESSON 2: The Java Environment 39

L
E

S
S

O
N

 2
program, the Java interpreter translates this byte-code into the machine code
for whatever system the Java interpreter is on.

For example, Java source code is written and compiled on a Sun workstation
running Solaris. If a Java interpreter running on Solaris invokes the byte-
code, the Java interpreter will translate the byte-code into Sun machine
code. Now, that same byte-code is copied over to a PC running Windows95.
In this scenario, the Windows95 Java interpreter translates the byte-code
into PC machine code.

Because of the time the Java interpreter needs to translate byte-code into
machine code, Java applications run somewhat slower than applications
stored in native machine code. The programmer’s PATH must contain the
directory where the interpreter java is stored.

The programmer may also need to add the directory containing his/her class
files to the CLASSPATH environment variable.

Parameters can be passed to a Java application when it is invoked. For exam-
ple, to invoke a Java application named MyWork and to pass it two parame-
ters (42 and /contacts/sales.txt) , the following would be typed:

If the programmer is using a Java development environment, then the appli-
cation can be run by invoking a menu function.

Running Java Applets

Java applets are not run the same way as Java applications are run. To run a
Java applet, the programmer must first insert the HTML tag <APPLET>
into an HTML document. The <APPLET> tag must have the following
form:

WIDTH and HEIGHT designate the size of the applet window (in pixels).
The CODE, WIDTH, and HEIGHT fields are required in every APPLET tag.

TIP

To pass a parameter
that includes a white
space, include the
parameter in quotes,
i.e. java MyWork
“This is just one
parameter”

java MyWork 42 /contacts/sales.txt

<APPLET CODE=”name-of-byte-code-file ” WIDTH= m
HEIGHT=n>

40 JAVA PROGRAMMING: PART 1
For example, the following directive has to be placed inside an HTML doc-
ument in order to invoke the HiWorld applet:

If the programmer is using a Java development environment, the environ-
ment itself may create the HTML document for them.

Viewing HTML Documents with Embedded Applets

After creating the HTML document, the programmer needs to load it into a
tool that can handle Java applets. The most common choice is a Java-
enabled browser such as Netscape 2.0 (or a later version). The HTML doc-
ument is loaded as one would load any HTML document from a browser.

1. Specify the full URL:

2. specify the pathname on the local disk:

Note that users with Java-enabled browsers can disable Java, preventing
applets from running on their machines.

HotJava and appletviewer can also run and load HTML documents
containing the <APPLET> tag.

To invoke appletviewer from a command prompt, type applet-
viewer followed by the name of the HTML file. For example:

<APPLET CODE=”HiWorld.class”
WIDTH=150 HEIGHT=75>

</APPLET>

 http://www.me.com/homepage.html

 homepage.html

appletviewer homepage.html

LESSON 2: The Java Environment 41

L
E

S
S

O
N

 2
➤➤➤ TOOLS AND PACKAGES

The javadoc and jdb Tools

Java provides an automatic documentation tool that can extract comments
embedded into source files. This tool is called javadoc .

javadoc searches in source files for comments that begin with the symbols
/** , then writes them out into HTML files. If the files contain no com-
ments like this, then the tool cannot help. Therefore files created by pro-
grammers have to be commented extensively.

The Java Development Kit also includes the debugging tool jdb . This is a
command line debugger similar to Unix dbx .

Using packages

A package is a collection of classes. Java programmers wrap groups of
related classes into packages. For example, a Java programmer might create a
package called geography consisting of classes pertaining to geography.

To create a package, the programmer has to specify a package directive as
the first statement in each source code file that will go into the package. For
example:

The primary purpose of packaging classes is to ensure a truly unique name
for every class. For example, suppose that two programmers independently
create two different classes both named mapping . If a program accesses
mapping , it will not know which of the two classes to access. To eliminate
this kind of ambiguity, the programmers can put their mapping classes into
packages. If one programmer puts his mapping class into a geography
package and the other programmer puts her mapping class into a meteo-

javadoc filenames

package geography ;

42 JAVA PROGRAMMING: PART 1
rology package, then the application programmers can be sure they are
getting the geography mapping class by specifying:

and the meteorology mapping class by specifying:

The recommended names for package statements usually start with the
reversed name of the programmer’s Internet domain. By specifying the
Internet domain name as a preface, the programmer makes the class name
truly unique across the entire Internet. For example, suppose that two pro-
grammers create a mapping class in a geography package. If each pro-
grammer prefaces the package name with a domain name, the programmers
make the class names even more unique. For example:

➤ package edu.purdue.cs.geography

➤ package edu.mit.geo.geography

Searching for Classes

Java searches for classes in the following starting directories:

1. The current directory.

2. $JAVA/classes (where $JAVA is the parent location of the Java
compiler, interpreter and other components).

3. $JAVA/classes.zip . This is a .zip file rather than a directory.
Java knows how to extract class library components from a .zip file.

4. Any additional directories assigned to the environment variable
CLASSPATH. For example, to add a directory to the existing class path
(DOS), enter:

“System” directories are automatically appended to this list.

geography.mapping

meteorology.mapping

set classpath=%classpath%;c:\mywork

LESSON 2: The Java Environment 43

L
E

S
S

O
N

 2
The entries specified can either be directories that contain classes or .zip
files that contain classes. (Windows directories use \ instead of / .)

An alternative to assigning extra directories to CLASSPATH, is to specify a
directory on the command line when running the compiler or interpreter.
(To do this, use the option -classpath directory-name .)

The import Statement

Listing a long package name for every class used in a program can be
tedious. The import statement may be used to reduce typing.

The import statement of Java is often confused with the #include
directive of C. But the two are quite different. In fact, import does not
include any code, it simply reduces the amount of typing a programmer has
to do in order to access a class.

import has several forms. The following form allows a class to be called by
a short name:

For example:

means that wherever mapping appears in the program, the Java compiler
will infer:

The following form allows all the classes in a package to be called by a short
name:

TIP

import is especially
useful with long pack-
age names with sev-
eral dots to denote a
certain class.

import package.class ;

import geography.mapping;

geography.mapping;

import package. *;

44 JAVA PROGRAMMING: PART 1
The package java.lang is imported automatically by every program. The
programmer need not specify:

Packages, Classes, Files, Directories

Java programs are assumed to be developed as packages. All of the files for a
given package are required to be stored in a disk directory with the same
name as the package.

A fully qualified name for a class, the data, and the methods they contain,
includes the package name as a prefix with components separated by peri-
ods. Since directories on a given machine have unique names, this means a
package and its components can always be distinguished from other pack-
ages.

For example, the fully qualified name of the method snork() includes the
package name. As shown below:

This method snork() must be stored in a directory/file structure:

➤ on a Unix system as:

➤ on a Windows system as:

The compiler option javac -d directoryname can be used to tell the
compiler where to store .class files that it produces.

import java.lang.*;

mypackage.pictures.MyClass.snork()

.../mypackage/pictures/MyClass.class

...\mypackage\pictures\MyClass.class

LESSON 2: The Java Environment 45

L
E

S
S

O
N

 2
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Java is purely object-oriented.

➤ Java borrows C++ syntax, but avoids many of C++’s problem areas.

➤ Java produces programs that are robust and secure.

➤ The interpreter verifies all variable and memory access.

➤ Java applets are ideal for the World Wide Web.

➤ The package statement clarifies class name space and provides a way
to categorize related classes.

➤ The import statement reduces typing.

46 JAVA PROGRAMMING: PART 1
1. What command invokes the Java compiler from the command line?

2. What program usually runs a Java applet? Name another program that
can run a Java applet.

3. To access a Java applet, you have to place what HTML directive inside
an HTML document?

4. True or False: When writing a Java applet, the programmer must create
a main method.

5. True or False: The import statement of Java is analogous to the
#include statement of C.

Answers on page 196

REVIEW QUESTIONS

LESSON 2: The Java Environment 47

L
E

S
S

O
N

 2
1. Go to the javasoln directory in the on line materials.

Compile the Java source file named FirstApp.java to create Fir-
stApp.class .

Set the environment variable USER to your name.

Run the FirstApp program .

Run the program again, providing the names of a few of your friends on
the command line.

2. Go to the pkg subdirectory of the javasoln directory.

Look for a Java source file named SecondApp.java there.

Try to compile the source file to create SecondApp.class .

What error does the compiler report? Edit the source file to correct the
error.

3. Go back to the javasoln directory.

Compile the source file named FirstApplet.java to create Fir-
stApplet.class .

Run the FirstApplet applet by invoking the applet viewer on the
HTML file FirstApplet.html .

EXERCISE

▼

▼
▼ LESSON 3

Java Basics
OVERVIEW
Java syntax is based on those of C and C++. As a result, the basic methods
of declaration, expression evaluation, flow control, and commenting in
Java are virtually identical with those of C and C++. Java does include
some enhancements though, such as improvements to boolean operations.
This lesson gives an overview of these basic methods and improvements.

LESSON TOPICS
● Language Basics

● Expressions

● Statements

50 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Read and understand:

• expressions,

• statements, and

• control structures written in Java.

➤ Write simple Java programs that work with variables of native data
types.

➤➤➤ LANGUAGE BASICS

Comments

Comments are blocks of readable text inserted into code for the benefit of
other programmers; both those who must use the code and those who must
modify it. Comments are ignored by the compiler, so they need not adhere
to any particular syntax.

Java recognizes traditional C-style comments. Traditional C-style comments
are delimited by /* ... */ and can span more than one line. C compilers
ignore all text after the opening /* up until a subsequent */ , which means
that comments cannot be nested. (Some C++ compilers detect nested C-
style comments and warn the user about them.)

Java also recognizes C++-style comments. In C++ comments are written
starting with two slashes, like this: // ... , and run up to the end of that
line of text. They cannot span more than one line: in a multi-line comment,
each line must start with // . Comments like this are recommended because
they can be nested inside C-style comments.

Java also extends the traditional C-style comment by starting with /** .
This would be recognized as a conventional comment. In addition, a com-
ment beginning with /** provides a documentation tool that can extract
comments from source code to create external documentation. When a pro-

LESSON 3: Java Basics 51

L
E

S
S

O
N

 3
grammer embeds comments like this in code, that programmer is simulta-
neously writing its documentation.

Java has a special comment form which produces online documentation and
is read by a javadoc , too.

Data Types

Java supports the native data types listed in Table C. Native data types are
those provided automatically by the compiler in contrast to those that are
defined as classes by programmers.

One of the major obstacles to cross platform porting of applications has been
that there are very few standards for storage schemes. Every machine and
every CPU has its own “word” size and its own storage format for basic data
types. Java defines the sizes and formats of each of these native data types,
and leaves it up to the interpreter to implement these sizes and formats on
the local platform. This makes code fully portable.

The Boolean Type

Most of Java’s native data types are recognizable to C programmers, but
boolean is new, inherited from more strongly-typed languages like Pascal.

/** This is a “doc” comment */

TABLE C. Native Data Types

Type Contains Default
value

Size
(bits)

Min and Max values

boolean true or false false 1 Not Applicable

char Unicode character \u0000 16 \u0000 to \uFFFF

byte signed integer 0 8 -128 to 127

short signed integer 0 16 -32768 to 32767

int signed integer 0 32 -2147483648 to 2147483647

long signed integer - 64 -9223372036854775808 to
9223372036854775807

float IEEE754 flt. pt. 0.0 32 +/-3.40282347E+38 to
+/-1.40239846E-45

IEEE754 flt. pt. 0.0 64 +/-1.79769313486231570E+308 to
+/-4.94065645841246544E-324

52 JAVA PROGRAMMING: PART 1
boolean data contains only the specific values true or false and is the
result of logical operations (equal to, less than, etc.) Java does not permit free
conversion between boolean and other types. Wherever a boolean value is
expected, as the condition in an if statement for example, the programmer
must provide a value of boolean type. This may be surprising to C and C++
programmers who are accustomed to using integers or even pointers in place
of true/false values.

Integer Types

The Java type int represents a signed 32 bit integer. There are no unsigned
integers in Java as there are in C and C++. Java does not recognize the C
keyword unsigned . The types long , short and byte are integer
types that differ from plain integers in the amount of storage space they
require. In Java, the keywords long and short represent complete types.
They are not declaration modifiers as in C.

The Java char type requires two bytes and not one byte as in C/C++. This
allows Java to support the Unicode standard for international (non-Latin)
character sets. To use single-byte data, use type byte . Java characters
behave as unsigned integers.

Floating Point Types

Java provides types float and double in IEEE754 format. These types
may contain the expected floating point format values in addition to four
special values:

➤ positive infinity

➤ negative infinity

➤ negative zero

➤ not-a-number (NaN)

These values are not normally assignable to variables, but could be obtained
by unexpected arithmetic such as divide-by-zero, divide-by-negative-zero,
etc. They differ in size and precision and may be combined in expressions.

Positive infinity, negative infinity and negative zero operations result in spe-
cial floating point values. A not-a-number (NaN) is unordered (neither <
nor > anything). It yields false when compared with anything, even itself.

LESSON 3: Java Basics 53

L
E

S
S

O
N

 3
Declaring Variables

For variable declarations, Java syntax is similar to C and C++ syntax. For
native types, the syntax may be summarized as follows:

➤ a one word type name

➤ a list of variable names, separated by commas

➤ an optional initializer following each variable name

➤ a terminating semicolon

The following are examples of variable declarations:

➤ This line of Java code declares a 32-bit integer variable named i :

➤ This line declares two 32-bit integer variables named i and j :

➤ This line declares i and j as above and initializes them:

It should be noted that long and short are data types unto themselves,
not modifiers as in C:

Identifiers

Every named program component—class, package, function or variable—
must have a legal identifier (or name). An identifier must contain only

int i;

int i, j;

int i = 3, j = 4;

short int i;// Not OK in Java

54 JAVA PROGRAMMING: PART 1
alphanumeric characters and must begin with either an alphabetic character,
a $, or an underscore. The following are legal identifiers:

➤ dummy

➤ box$

➤ a37

➤ post_code

The following are not legal identifiers:

➤ rain@noon

➤ 2by4

➤ post code

The compiler distinguishes between uppercase and lowercase characters. For
example, abc , Abc , aBC and aBc are all different identifiers.

By convention, variables begin with lowercase. Case can be a useful tool for
making programs more readable as in: areaOfCircle .

The only other restriction is that keywords defined by the language cannot
be used as identifiers—for instance, one may not call a variable an int .

Literals

A literal is a program element that represents an exact value of a certain type.
We have seen examples of integer literals. Here is another:

Integer Literals

Unless otherwise specified, an integer literal is normally of type int and 32
bits wide. Specifying an integer literal that requires more than 32 bits of
storage, results in an overflow error at compile time; unless the integer literal

NOTE

Identifiers that begin
with an uppercase
letter are normally
used for user-defined
types, i.e. classes.

int i = 0xff;// a hexadecimal integer literal
int j = 0723;// a octal integer literal
int k = 123;// a decimal integer literal

LESSON 3: Java Basics 55

L
E

S
S

O
N

 3
is of type long . To specify an integer literal of type long , append an L
(either upper or lower case) to the number. For example:

Floating Point Literals

A numeric literal containing a decimal point is a floating point literal, type
double by default. For example:

To specify a floating point literal of type float , append an F (either upper
or lower case) to the number. For example:

Character Literals

Java uses two bytes for storage of character data in order to support the Uni-
code character set. This is a standard developed by the Unicode Consortium
to accommodate international non-Latin characters. All of the traditional
ASCII printing characters are in the same ordinal position in the Unicode
character set, so that except for the storage size, printing characters are han-
dled identically between ASCII and Unicode. Non-printing characters are
supported in Java by the standard escape characters, e.g., \b for backspace,
\t for tab, \n for newline, and \\ for the single character “\ ”. A simple
character literal is a character enclosed within single quotes:

Java supports the standard C escape sequences: \n , \t , \b , \\ , etc. It also
supports \ xxx where xxx is 3 octal digits.

long l1 = 5000000000L;
long l2 = 0xfffffffffffffffL;

double d = 1.0;

float f = 0.06F;

char term = ’.’;

56 JAVA PROGRAMMING: PART 1
➤➤➤ EXPRESSIONS

Java, like C, is an expression-based language. Java expressions represent com-
putations and sometimes flow of control. The simplest expression is a literal
or variable that has a value and a type. A more complicated expression is
composed of an operator applied to one or more operands, all of which are
also expressions. These usually represent the machine code to be executed.
This results in a new value and type. Examples of this are:

Java Operators

Java supports most C++ operators. In addition, it supports a few that are
unique to it.

Operators may be classified by their number of operands. Operators that
take only one operand are unary. Operators that take two operands are
binary. Java supports one ternary operator that takes three operands.

Many Java operators are similar to those in other programming languages.
For example, the signs +, - , * , and / perform arithmetic.

More Java operators are familiar to C and C++ programmers such as

➤ = assignment

➤ ==, != equality

➤ +=, -=, *=, etc. compound assignment

Programmers familiar with C should note that in Java the relational opera-
tors (<, >, <= and >=) produce boolean and not integer results.

int a = 1;
int b = 45;
int c;
c = b // assignment expression
c = c + a
c += a // C-style plus-assignment

LESSON 3: Java Basics 57

L
E

S
S

O
N

 3
Operations

Operations on Integers

The unary increment and decrement operators ++ and -- can be confusing
to those unfamiliar with C. They come in two forms, pre fix and post fix.
They perform two operations. They increment (or decrement) their operand,
and return a value for use in some larger expression. In prefix form, they
modify their operand and then produce the new value. In postfix form, they
produce their operand’s original value, but modify the operand in the back-
ground.

In the above code, if the values of both x and y are incremented to 5, a is
assigned x ’s starting value of 4, but b is assigned y ’s final value of 5. To
interpret these expressions correctly, the programmer must recognize that
the ++ operator has precedence over assignment. This may seem obvious to
non-C programmers, but it should be remembered that in C based lan-
guages, the assignment symbol = is just one of many operators and that it is
subject to the same rules of interpretation.

Optimizing compilers often reorder the execution of code. There is no guar-
antee that the increment of x or y will take place before or after the assign-
ment. The only requirement is that the values be determined in this logical
order.

Note that expressions like the following are ambiguous because precedence
specifies the logical interpretation of two or more operators, but not the two
operands of a single binary operator.

In the above code, it is not known whether the second operand will be eval-
uated first, thereby modifying the first operand; or whether the first operand
will be evaluated first. If x starts with value 4, a could end up with either 8
or 9.

The following is a list of operations on integers:

int x = 4, y = 4;
int a, b;
a = x++;
b = ++y;

a = x + x++;

58 JAVA PROGRAMMING: PART 1
Unary integer operators

➤ - arithmetic negation

➤ + arithmetic constant

➤ ~ bitwise complement

➤ ++ increment

➤ -- decrement

Binary integer operators:

➤ +, - , * , / addition, subtraction, multiplication, division

➤ % modulus (remainder)

➤ &, | , ^ bitwise AND, OR, XOR

➤ << left shift

➤ >> right shift with sign fill

➤ >>> right shift with zero fill

There is a compound assignment operator for each of the above binary oper-
ators.

Integer operations produce a result of type int unless one or more operands
is of type long , in which case the result type is long also. The result is
never shorter than an int even if all the operands are shorter than an int .

The compiler automatically widens integer values:

byte b = 0;
int i = 0;
long l = i + b;// byte to int,

// then int to long

LESSON 3: Java Basics 59

L
E

S
S

O
N

 3
The programmer must forcibly shorten integer values by using a type cast:

Type casting between integer types works in Java as it does in C. Whenever
an integer value is converted to a shorter type, the new value is the old value
modulo the range of the new type.

Operations on Booleans

Boolean variables or expressions can be combined logically to produce bool-
ean results. The unary ! operator is logical negation. The binary &, | and ^
operators correspond to logical AND, OR and XOR respectively. The &&
and || operators are similar to & and | , but short circuit the evaluation of
the right-hand operand if the result is known from an evaluation of the left-
hand operand.

The boolean &, | and ^ operators are unique to Java while && and ||
derive from C. In C and C++, the normal boolean combination operators
terminate as soon as their final value is knowable. For example, if a && b
are being tested, the result will be recognizable as false if a is false . For
reasons of speed, a will be determined first, and if the result is false, b will be
ignored. In expressions like a && b() where b() is a function to call, b()
will never be called if a is false . Many programmers utilize this syntax
feature to have one expression as a switch, controlling another’s execution.
The &, ^ , and | operators in Java are actually a reuse of the bitwise opera-
tors. When their operands are boolean types instead of int types, they per-
form logical combinations but with both sides always evaluated.

The equality operators == and != work with boolean operands, as do the
compound assignment operators &=, |= and ^= .

The ternary ?: operator works in Java as it does in C, except that in Java the
condition operand must be of type boolean . The types of the second and
third operands must be compatible.

byte a = 1;
byte b = 2;
byte c;
c = a + b; // error - int to byte
c = (byte)a + b;// still wrong!
c = (byte) (a + b);// OK

60 JAVA PROGRAMMING: PART 1
Floating Point Operations

Any of the arithmetic integer operators may be applied to floating point
operands with the expected results. This includes the compound assignment
operators and the increment and decrement operators but not the bitwise
operators (&, | , ^ , << , >> , >>>). The increment and decrement operators
add or subtract 1.0 to their operand.

The % operator can be applied to floating point operands in Java. Floating
point modulus is defined as the floating point remainder, i.e., a %b is equiva-
lent to:

The binary operators +, - ,* and / represent addition, subtraction, multipli-
cation and division respectively.

If both operands of a floating point operation are type float , the result is
type float . Otherwise, the result is type double . Keep in mind that
floating point literals are type double by default. The compiler converts
float to double automatically, but converting double to float
requires a cast, as does converting a floating point value to any integer type.
The compiler converts any integer type to a floating point type without a
cast.

Undefined operations such as division by zero do not generate exceptions in
Java as in other languages. Instead, an undefined operation produces one of
the special floating point values (NaN, Inf, etc.). The programmer has to
keep the special properties of NaN in mind when comparing floating point
values.

The following code samples illustrate that double to float conversion
requires a cast; floating point to integer conversion requires a cast; and inte-
ger to floating point conversion does not require a cast:

a - ((int) (a / b) * b)

float f = 1.0F;
float f2;
f2 = (float) (f + 1.0);// OK
f2 = f + 1.0F;// also OK

LESSON 3: Java Basics 61

L
E

S
S

O
N

 3
Precedence and Associativity

Precedence

Java, like C, allows expressions to be arbitrarily complex. The compiler must
apply some rules to determine the order of execution in expressions like this:

Syntactically, this is made up of four variable names (x , a, b, and d) , a lit-
eral (15), and four operators (=, *, +, and /). When two or more oper-
ators occur in the same larger expression, the compiler applies the two rules
of precedence and associativity.

Precedence determines which operators are interpreted before which others:

The above is interpreted as, “evaluate 2 * 3 , produce 6 , then evaluate 5
+ 6 , produce 11 .”

Java’s precedence rules are similar to C’s.

Arithmetic operators work as expected with multiplication and division
always taking place before addition and subtraction.

The use of extra parentheses is harmless and makes the expression more
readable:

There are two other noteworthy precedence rules:

1. Arithmetic operators always take precedence over relational operators.

f += 1; // OK
f = (int) f;// also OK

x = a * b + d * d / 15

5 + 2 * 3

x = ((a * b) + ((d * d) / 15))

62 JAVA PROGRAMMING: PART 1
The following is correct:

2. Relational operators take precedence over bit wise logical operators. The
parentheses are necessary in the following:

Where there are several operators with the same precedence, associativity
determines which operator is interpreted first.

The example above is interpreted as, “40 / 5 , produce 8 , then evaluate 8
/ 4 , produce 2 .”

Arithmetic operators associate left to right.

In the expression above the multiplication operators have highest prece-
dence, the division occurs after d * d , then the addition happens, and
finally the result is assigned into x . Assignment is an operator with a very low
precedence.

Table D summarizes operator precedence.

int index, upper;
...
boolean inBounds = index < upper - 1;

int val;
...
boolean isZero = (val & 0xff00) == 0;

TIP

Rule of thumb: when
precedence is in
doubt, use parenthe-
ses to specify the
order of execution.

40 / 5 / 4

x = a * b + d * d / 15

TABLE D. Operator Precedence

Prec. Operator Operand Type(s) Assc. Operation Performed

1 ++ arithmetic R pre- or post-increment (unary)

-- arithmetic R pre- or post-decrement (unary)

+, - arithmetic R unary plus, unary minus

~ integer R bitwise complement (unary)

LESSON 3: Java Basics 63

L
E

S
S

O
N

 3
Associativity

When two operators have the same precedence, associativity determines
evaluation order.

For example, the multiplicative operators (* , /) have the same precedence
and associate left to right. Therefore, the example below has the value 9, not
1.

! boolean R logical complement (unary)

(type) any R cast

2 *, /, % arithmetic L multiplication, division, remainder

3 +, - arithmetic L addition, subtraction

+ String L String concatenation

4 << integer L left shift

>> integer L right shift with sign extension

>>> integer L right shift with zero extension

5 <, <=, >, >= arithmetic L less than, greater than, or equal to

instanceof object, type L type comparison

6 ==, != native L have same or different values

==, != object L refer to the same or different object

7 & integer or boolean L bitwise AND or boolean AND

8 ^ integer or boolean L bitwise XOR or boolean XOR

9 | integer or boolean L bitwise OR or boolean OR

10 && boolean L conditional boolean AND

11 || boolean L conditional boolean OR

12 ?: boolean, any, any R conditional operator (ternary)

13 = variable, any R assignment

*=, /=, %=,
+=, -=, <<=,
>>=, >>>=,
&=, ^=, |=

variable, any R assignment after operation

TABLE D. Operator Precedence

Prec. Operator Operand Type(s) Assc. Operation Performed

6 / 2 * 3

64 JAVA PROGRAMMING: PART 1
For the assignment operators, right to left association is more appropriate.
The two examples below are equivalent.

This means, “set b’s value to 3; copy its value to a.”

Assignment: This is an operator with right to left associativity which
changes the left-hand argument’s value and produces a value for the next
operation.

The above example assigns 3 into b and produces the value of 3. The next
assignment operator assigns 3 into a. This also produces a value of 3 (which
is thrown away).

This reverse associativity makes it easy to assign several variables at once:

➤➤➤ STATEMENTS

Java, like C, is an expression-based language. Expressions must always
appear in the context of statements. A statement consists of an expression fol-
lowed by a terminating semicolon (;).

Like in C, the Java format of text on a line has no significance to the com-
piler except for:

➤ C++ style comments which end at the end of a line

➤ quoted string literals (e.g., “Hello World! ”) which cannot span
more than one line

➤ white space that the compiler recognizes as the separator between key-
words, identifier names, operators, and other symbols

Statements can be made up of zero or more expressions, provided that their
combination makes syntactic sense. Expressions (except for the return value

a = b = 3

a = (b = 3)

a = b = c = d = e = 0

LESSON 3: Java Basics 65

L
E

S
S

O
N

 3
of void methods) have a value and a type. Many involve executable code,
though this is not necessary. A singe value (e.g., 27) is a legal expression. A
terminating semicolon (e.g., 27;) turns it into a legal statement even
though it does not do anything useful. A simple statement consists of an
expression and a semicolon. The semicolon is a required terminator.

The following are expressions:

➤ a

➤ i * j

➤ z = x * y

Adding semicolons to these expressions turns them into statements:

➤ a;

➤ i * j;

➤ z = x * y;

The first two are not legal and return errors with the 1.0.2 Java compiler.
The third calculates a product and stores it into z .

Control Structures

Flow control in Java uses similar syntax as in C. The syntax for the most
commonly used control structures may be summarized as follows:

➤ i f

• if (boolean - expression) statement

• if (boolean-expression) statement else

statement

if (i > 0)
x = y * z;

else // else part is optional
x = 0;

66 JAVA PROGRAMMING: PART 1
➤ while

➤ for

The example above results in the following:

➤ initialize i to 0

➤ continue only if i < 22

➤ do body of loop

➤ increment i

Note: The conditions must be of type boolean .

Compound Statements

In many contexts, the program will need to execute several statements in a
place where the syntax permits only one. A compound statement is syntacti-
cally a single statement, yet it may include as many other statements as
needed. These statements can be of many kinds, including other compound
statements. A compound statement (also called a block) is delimited by a pair

NOTE

The difference
between while and
do-while refers to
when the condition
check is done—
before or after exe-
cuting the loop.

while (boolean-expression) statement

while (getMember (i))
i++;

do statement while (boolean-expression)

do
a += a;

while (a <= limit / 2);

for (initialization ; boolean-expression; next-
iteration-setup) statement

for (i = 0; i < 22; i++)
a = a + i;

LESSON 3: Java Basics 67

L
E

S
S

O
N

 3
of curly braces ({}) and can contain any number of declarations and state-
ments. A compound statement may be used wherever a simple statement is
legal.

Compound statements allow the use of several statements where syntax
would normally expect just one:

The entire compound statement above is part of the original if statement.

The continue Statement

The continue statement causes an immediate branch to the end of the
innermost loop that encloses it, skipping over any intervening statements. It
consists only of the keyword continue and a semicolon.

A continue does not cause an exit from the loop. Instead, it immediately
initiates the next iteration. The loop control expression will be evaluated,
and if it is true, another iteration of the loop will be performed. The incre-
ment expression of a for loop will also be evaluated. For example:

continue can be thought of as meaning “get on with the next iteration.”

The break Statement

Like continue , the break statement consists only of the keyword and a
semicolon. A break causes an immediate jump out of a loop to the first
statement after its end. The loop control expression is not re evaluated, and
neither is the iteration expression of a for loop.

if (a < b)
{

ijk = xx + 2;
bz = ijk * 6 + 22;
...[more work]

}

int i;
for(i=1 ; i<=10 ; i++)
{
 if (i == 5)
 continue;
 ...[do more work]
}

68 JAVA PROGRAMMING: PART 1
The break statement makes it possible to perform loop control in the mid-
dle of a loop and is useful for handling any errors or exceptions that may
occur during iteration.

If loops are nested, a break or continue affects only the innermost loop:

Labeled break and continue

In Java (as in C and C++) a label is an identifier followed by a colon:

while (1 == 1) // always true!
{
 ...[do something]

if (a == b) break; // time to leave the loop!
...[do more work]

}

for (i = 1 ; i <= 10 ; i++)
{
 for (j = 1 ; j <= 10 ; j++)
 {
 if (j == 5)
 break;/* exits j loop, not i loop */
 ...[do work here]
 }
}

NOTE

In this example, a
regular break (with-
out loop1) will only
get us out of the
inner loop.

Point_A: a = x + y;
...[do more work]

LESSON 3: Java Basics 69

L
E

S
S

O
N

 3
In C and C++, this is a justifiable use for the troublesome goto statement.
In Java, break and continue followed by a label can help in identifying
an enclosing loop. For example:

This enables the breaking out of an enclosing outer loop if two or more
loops are nested within.

The switch Statement

The break , continue , and return statements provide the ability to
leave a block of code at one of several places. The switch statement pro-
vides variable entry points to a block.

The control expression is evaluated and compared in turn with each value
prefaced by the case keyword. The values must be constants (i.e., determin-
able at compile-time) and may be of type byte , char , short , int , or
long . Execution begins at the first statement following the case for which
the value matches the control expression.

loop1: while (a != b)
{

...[do something useful]

while (i != j)
{

...[do some work]

// Should we quit both loops now?
if (zztop > y+1)
break loop1;

...[do more work]
}

}

switch(control-expression)
 {
 case value : statements
 case value : statements

 ... etc.
 default: statements // optional default section
 }

70 JAVA PROGRAMMING: PART 1
If no match is found, execution begins with the first statement following the
default label. The default is optional, but it is good style to include it
in every switch. If there is no match, and there is no default provided
either, none of the statements in the switch will be executed, with the execu-
tion continuing with the next statement after the closing bracket.

Execution of statements does not stop when the next case is reached. Once
an entry point has been found, all of the remaining statements in the
switch will be executed unless an explicit branch is performed by usually a
break statement.

When included in a switch , the break will cause an immediate branch
beyond the terminating brace of the switch .

Scope

Java has no global variables. All variables must be declared within either a
class scope or a function scope. As in C++, all class variables are in scope within
their entire class, even if their use comes before their declaration. Examples
of class scope variables are explained and illustrated in a later chapter on Java
classes.

Local variables, (i.e., variables declared within an executable block) must be
declared before they are used. As in C++, but unlike in C, a variable declara-
tion may follow the first executable statement in its block. A local variable is
in scope from the point it is declared until the end of its block. Its block is
defined by the compound statement that contains the variable declaration.

Once a local variable is declared there can be no other local variable declared
of the same name until the variable goes out of scope. This is true even if the
second declaration appears in a more deeply nested block. This is yet
another departure from C/C++.

Like C++, Java allows the first clause of a for statement to be a variable
declaration. Unlike C++, Java limits the scope of such a variable to the for
loop only, which is convenient for the programmer.

A local variable is a variable declared within a block of executable code. It
may be declared anywhere within a function or a compound statement. A
local variable is in scope from the point of its declaration until the close of its
block (compound statement). There may be only one local variable of a
given name within scope at one time.

LESSON 3: Java Basics 71

L
E

S
S

O
N

 3
The first clause of a for statement can declare a variable that is local to the
for loop:

These rules differ from C++ rules.

Functions

Java uses a syntax similar to that of C and C++, and many other program-
ming languages to represent a function call.

The parameter list is separated by commas. The function returns a value
unless its return type is declared void .

Functions declared other than void return values of the declared type.
Here are two examples:

{
int x;

for (int i = 0; i < 60; ++i)
{

int x;// error - two x’s!
}

for (int i = 0; i < 60; ++i)
// ok - prior i is out of scope!

{
}

}

func-name (param-list)

long t = currentTime ();
double a = areaOfOval (width, height);

72 JAVA PROGRAMMING: PART 1
Simple Output

Simple output in a Java program (JDK 1.1) can be programmed by creating
a PrintWriter object called stdout and using its print or println
methods:

The println method ends output with a newline character. The parame-
ter of these methods should be a string, either a variable of type String or
a quoted string literal. Other values can be appended to the first string with
the + symbol. This works because:

➤ The compiler recognizes the + with the String class as meaning
concatenate.

➤ All class-type variables inherit the method toString() from the
superclass Object (from which all Java variables are derived). Thus,
anything can be converted to a String and concatenated to the ini-
tial String for output.

NOTE

In this example,
std out is being
used as a regular pro-
grammer defined
name and not a spe-
cial name as in C.

PrintWriter stdout = new PrintWriter(System.out, true);
stdout.println (“...”);
stdout.print (“...”);

LESSON 3: Java Basics 73

L
E

S
S

O
N

 3
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Java is purely object-oriented.

➤ Java syntax is similar to that of C and C++.

➤ Java’s native data types include:

• byte , short , int , long , char

• bool

• float , double

74 JAVA PROGRAMMING: PART 1
1. Given the following declarations, what are the result types of the Java
expressions below?

a. i << 1

b. b + 1

c. l + i + b

d. f * 1.0

e. d % i

2. What is the difference between:

a. the boolean operators & and && ?

REVIEW QUESTIONS

int i;
byte b;
long l;
float f;
double d;

LESSON 3: Java Basics 75

L
E

S
S

O
N

 3
b. the integer right shift operators >> and >>> ?

3. Find the compiler error in the following code:

Answers on page 196

int x = 1;
do
{

int half = x;
x *= 2;

}
while (half < 1024);

76 JAVA PROGRAMMING: PART 1
1. Go to the exercise subdirectory of the Java directory. Edit the file
DivTest.java . In the area provided, insert Java code that prints one
of the following two messages:

➤ x is evenly divisible by y

➤ x is not evenly divisible by y

depending on whether the value of variable y evenly divides the value of
variable x in the DivTest class.

Modify your program to print the values of x and y instead of “x ” and
“y ”. Test your program by setting various values for x and y, recompiling
and running your program. What happens if you set y to zero and run?

2. Still in the exercise subdirectory, look for a source file named Dig-
its.java . Edit the file, which contains the beginnings of a program
to take the value of the variable x and print an English word for each of
its digits. For example, if the value of x is 496 , the program prints:

four nine six

Finish the program. (Hint: use a switch statement to translate a digit
to a string.) Test your program. Make sure that it works for a value of
zero.

EXERCISE

▼

▼
▼ LESSON 4

Classes in Java
OVERVIEW
A class is a user defined type created by grouping together pertinent
methods and data members. The class is a key component of Java
language, as it facilitates modularity and code reuse. Once created, a new
type can be used in expressions in the same way as a built-in type (such as
int or char). While Java classes are, on the whole, similar to C++
classes, there are still small but crucial differences.

LESSON TOPICS
● Java Is Object-Oriented

● Instantiating a Class

● Class-Type Variables

● Operations on Class-Type Variables

● The null Value

● Member Access

● Class Definitions

78 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Work with Java class instances.

➤ Declare and initialize instance variables.

➤ Access data members and methods of an instance.

➤➤➤ JAVA IS OBJECT-ORIENTED

Java is an object-oriented (OO) programming language. A Java program
may be thought of as a system of interacting objects in which each object has
its own state and behavior. The form and behavior of each object is defined
by the object’s class. A class is a data type and a code module. Designing a
Java program means designing the classes that make up the program.

Object-oriented program design builds from the bottom up as much as it
does from the top down. Objects are constructed from other objects, and
they may, in turn, become the components of larger objects. The developer
abstracts the behavior of similar objects into class definitions. Similar classes
are further abstracted into superclasses, resulting in hierarchies of related
classes. Viewed from the opposite perspective, the programmer defines
classes that are highly abstract, derives more specialized classes from them,
then creates the actual objects as instances of those classes.

Object-oriented programming results in programs whose structures more
accurately map to the problem domain and are thus are more likely to meet
users’ needs. The object model carries modularity to a much higher level of
abstraction than the structured model. The cross linking that makes both
development and maintenance a painful exercise in tracing subtle side-
effects is greatly reduced. This modularity, together with the more flexible
structure of OO programs, makes software easier to develop, debug,
enhance, and modify.

The generalization of highly modular objects into classes and classes into
families of related types also permits much greater reuse of code than has
been achieved hitherto by way of function libraries, database systems, and
other traditional means. Reusability combines with streamlined develop-
ment and maintenance to make programmers far more productive.

LESSON 4: Classes in Java 79

L
E

S
S

O
N

 4
Classes, Objects and Variables

A Java class definition establishes the interface and implementation of a cat-
egory of objects.

Using a syntax rooted in that of C structures, the programmer defines data
members and function members of a class. Data members specify the internal
data representation. Function members serve two purposes: their headers
(names, parameters, and return types) specify the interface visible to code
outside the class, and their bodies specify the methods by which objects of the
class perform the work they are designed to do.

User code takes advantage of a class specification by instantiating the class,
i.e., by creating instances of it. A variable of a programmer defined type is
declared with the same syntax that is used to define variables of built-in
types. Each instance of a class is an object. The object’s data members can
take on values unique to that object, while its member functions implement
the behavior common to all objects of the same class. There can be any
number of instances of a given class at any one time.

A Java class-type variable identifies an instance. It does not contain an
instance, as is the case in some other object-oriented programming lan-
guages. There can be any number of variables referring to a given object at
any one time.

➤➤➤ INSTANTIATING A CLASS

With the exception of array objects, class-type objects may be instantiated
only through the new operator. The keyword new must be followed by the
name of the class to be instantiated, and then by a list of initialization
parameters. The new operation allocates space for a new object, initializes
the new object, and returns it. For example, the creation of an instance of
Box (object) is shown in Figure 3:

WARNING

Unlike C++, a decla-
ration like
Box myBox;
does not create an
instance of the Box
class. The instance is
created only after
new is called on Box.

80 JAVA PROGRAMMING: PART 1
FIGURE 3
Creation of an instrance of Box

The new operator allocates space for the new object, calls a class constructor
and returns a reference to the object.

It should be noted that the class and its constructor have the same name.

➤➤➤ CLASS-TYPE VARIABLES

Creating the variable looks just like a native-data type definition. However,
the variable is simply a reference. It does not actually instantiate the object.
Class-type variables are references, not objects themselves. Instantiation of an
object with the keyword new and declaration of a class-type variable are sep-
arate operations. These two steps may be combined in one statement as an
initialization. For example:

A class-type variable refers to (points to) an instance; it does not contain an
instance. There can be any number of variables referring to a given instance
at any one time. The difference between a class-type variable and a variable
of native type which contains a value of its type is to be noted.

Box mybox = new Box (2.0);

keyword

constructor

initialization parameter

class name

object name

Box myBox = new Box (2.0);

LESSON 4: Classes in Java 81

L
E

S
S

O
N

 4
➤➤➤ OPERATIONS ON CLASS-TYPE
VARIABLES

All class-type variables support the following operations:

➤ assignment

➤ ==

➤ !=

The assignment operator reassigns the object to which the variable refers.
Assignment does not modify the value of any object.

Suppose there is a class named Box:

When a class-object variable is used in code, it does not imply the value
stored in the variable. Rather, it implies the object variable references. In the
example above, box1 and box2 are set to reference the same object. Then
box3 is given a brand new object. This is very different from the behavior of
native-data type variables. In this sense, a class variable is more like a class
pointer from C++ than a class object.

Box box1;
Box box2 = new Box (2.0, 3.0);
Box box3 = new Box (box2);

box1 = box2;
box3 = new Box ();

82 JAVA PROGRAMMING: PART 1
Below is an illustration of reference semantics:

➤ two variables initialized to refer to two separate objects:

➤ assignment:

➤ the effect of the assignment:

• box1 and box2 refer to the same object.

• The object box1 referred to previously is available for garbage col-
lection.

• Neither object changed in value.

➤➤➤ THE null VALUE

Another way in which Java class-type variables are similar to C and C++
pointers is that Java class-type variables may be null . A Java class-type
variable with the special value null refers to no object. The value null is
compatible with any class type, i.e., null may appear wherever a class-type
value is expected. Attempting to access a member of a null variable results in
a run-time error.

Box box1 = new Box (1.0, 1.0);
Box box2 = new Box (2.0, 2.0);

box1 = box2;

LESSON 4: Classes in Java 83

L
E

S
S

O
N

 4
➤➤➤ MEMBER ACCESS

Once a class has been instantiated, variables for that instance are accessed by
the “. ” symbol (dot).

For example, suppose that myCircle is a variable of class Circle , and
class Circle has a data member named radius of type double ; then
the following statements are legal:

Programmers familiar with C have to note that there is no -> operator
because object variables are not pointers.

Invoking a Method

Objects are usually thought of as self-contained entities whose characteris-
tics are defined by, among other things, the set of actions they are intended
to perform. A central concept of OO programming is that objects pass mes-
sages to each other. Objects can be seem as being self-contained and respon-
sive, like living organisms reacting to signals from the world around them.
External code triggers actions from, and gets information about, objects only
by sending messages to them and interpreting the responses. A call to an
object’s method is a message to that object requesting that it perform some
specified action.

A message has three components: a target, a selector, and a parameter list. Java
reflects its derivation from C by implementing messages as function calls,
using a syntax like that used to access members of structures. The user code
references the object (the target), then invokes a function which is a member
of that object (the selector), and supplies the arguments that function
requires (the parameter list).

NOTE

If radius were a
class variable, it could
be accessed as
Circle.radius .
Unlike C++, you
don't need to use ::
after class name in
Java.

myCircle.radius = 42.6;
double rad = myCircle.radius;

84 JAVA PROGRAMMING: PART 1
For example, suppose the object myCircle contains the following meth-
ods:

➤ getArea , which returns a double

➤ moveTo, which takes two double arguments

➤➤➤ CLASS DEFINITIONS

Every data item or method in a Java program, even the starting function
main() , must be declared as a component of a class.

A class definition consists of the keyword class followed by the class
name, then a set of curly brackets {} that designate the body of the class.
Variables and methods declared here are called class members. Class member
declarations, and the class itself, can be preceded by an access specifier. Pub-
lic classes can be instantiated by any other code.

double area = myCircle.getArea ();
myCircle.moveTo (0, 0);

LESSON 4: Classes in Java 85

L
E

S
S

O
N

 4
The following is an example of a Java class definition:

Figure 4 illustrates what the header communicates.

FIGURE 4
Meaning of headers

The class body (enclosed in {...}) defines the members of the class: vari-
ables, or data members, methods, or function members. Members can be

public class Box {
double height, width;

// Constructors
public Box(double h, double w) {

height = h;
width = w;

}
public Box(double s) {

height = width = s;
}

public double getHeight() {
return height;

}

public double getWidth() {
return width;

}

public double getArea() {
return height * width;

}
}

public class Box

Any other class can
use this class.

This is a class type.

This class is named Box.

86 JAVA PROGRAMMING: PART 1
declared public—they are not public by default. A private member can only
be accessed by another member of that class. A public member can be
accessed directly from outside the object. The principle of encapsulation
infers that data members should be private and that at least some of the
function members should be public. The public methods define an object’s
interface.

Declaring Instance Variables

All variables, unless declared static (discussed later), are replicated for
every instance of the class and therefore are referred to as instance variables.
For example, in the class definition for Box , the following code defines two
instance variables:

Every instance of type Box receives its own height and width .

When a class is instantiated, an object of that type is created; the new
instance obtains its own copy of every member variable including the meth-
ods. For example, consider the following class:

If background was the name of an instance of Color , then the color
could be defined by calling its setColor method:

Note that the color could not be set by assigning values to the data members
directly because they are private and not public.

double height, width;

class Color {

int r, g, b;

public setColor(int red, int grn, int blu) {
r = red;
g = grn;
b = blu;

}
}

background.setColor(255, 100, 0);

LESSON 4: Classes in Java 87

L
E

S
S

O
N

 4
The following statements would all generate compilation errors:

➤ background.r = 255;

➤ background.g = 100;

➤ background.b = 0;

Declaring Instance Methods

Methods defined inside a class are instance methods by default. An instance
method must be applied to an instance of the class of which it is a member.
For example, the class Box defines the methods:

➤ public double getHeight() { ... }

➤ public double getWidth() { ... }

➤ public double getArea() { ... }

These methods can be applied to any instance of the class Box .

Each method is defined fully within the class definition: the body of the
method is enclosed within curly braces ({...}) .

Methods can refer to instance variables of the target object directly:

Suppose we have a variable of type Color named background . We
might choose to “blacken” the background color by applying the method
setColor() to the instance background , by calling:

This applies the method setColor() to the instance background by
using the member access symbol “. ” (dot). Inside the method, the variables
are used by name and they are taken as applying to this instance’s copy of
each. Methods like this are called instance methods because they can be
applied to individual instances.

public double getArea() {
return height * width;

}

TRIVIA

This conforms to the
concept of encapsu-
lation in object-ori-
ented programming
in which class data is
held privately within
the class and outside
code uses functions
rather than directly
accessing class data.

background.setColor(255, 255, 255);

88 JAVA PROGRAMMING: PART 1
The this Variable

Java provides a keyword called this which allows an object to refer to itself.
Unlike the this pointer in C++, the Java version is simply another name for
the object. For example, if an object has a data member width , then the
following statements are equivalent when used within one of the object’s
function members:

The this keyword is not often needed, but there are times when it is use-
ful. Whenever an instance method must refer to the object of which it is a
member (or one of its constructors), it can use this to do so. It can also be
used to distinguish between parameter variables and data members having
the same name.

width = w;

this.width = w;

WARNING

If a parameter name
is the same as a class
member name, an
unqualified name will
refer to the parame-
ter and not to the
class member. this
must be used to refer
to the class member.
It is a good practice
to avoid having the
same name for
parameters and
members.

public class Box {
double height, width;
public Box(double height, double width) {
// Note that the parameter variables have the same
// name as the data members, so we use the this
// keyword when referring to the data members.

this.height = height;
this.width = width;

}
public Box(double s) {
// Here we use the this keyword to invoke the
// two-parameter constructor with the single
// parameter,saving us the trouble of
// rewriting the assignment statements.

this(s, s);
}
// Other methods...

}

LESSON 4: Classes in Java 89

L
E

S
S

O
N

 4
Class Definitions and Source Files

Each class is defined entirely within its source file. Unlike C and C++, there
are no header files in Java. While compiling a class, the Java compiler exam-
ines other compiled classes to check references and types across class bound-
aries.

There can be at most, one public class per Java source file. A Java source file
may contain any number of non-public classes, but those classes are limited
to use within the same package and are best used as “helper” classes for the
main public class in the same source file. If a Java source file contains a pub-
lic class, the name of the source file must match the name of the class, i.e.,
the source file must be named <classname>.java , where <class-
name> is the name of the public class defined within.

90 JAVA PROGRAMMING: PART 1
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Java classes are user defined types that facilitate code reuse and modu-
larity.

➤ A user defined type is used in the same way as a built-in type.

➤ Class members are accessed using the dot (.) operator.

➤ The this keyword allows an object to refer to itself.

LESSON 4: Classes in Java 91

L
E

S
S

O
N

 4
1. How would you declare an object of type Animal named Lion that
takes a weight of 500 and length of 45 as parameters?

2. What code would change the weight to 250 and the length to 35 in the
above Lion instance? Assume that weight and length are the
names of the Animal data members.

3. How many public classes are allowed in a Java source file?

Answers on page 197

REVIEW QUESTIONS

92 JAVA PROGRAMMING: PART 1
1. Create a new class named Clock . (You may put your new class in any
package you like.) Class Clock has the following attributes

• Hour (integer 1..12)

• Minutes (integer 0..59)

• Seconds (integer 0..59)

• isAM (boolean) :

These attributes are represented by data fields with default access pro-
tection. Class Clock supports the following public extractor methods:

• getHours()

• getMinutes()

• getSeconds()

• getIsAM()

Class Clock may be constructed in any of the following ways:

• no parameters (sets clock to midnight)

• hour and isAM specified (sets minutes and seconds to zero)

• all attributes specified

Class Clock also supports a setTime() method that sets all four
attributes from argument values. Compile the new class.

EXERCISE

▼

▼
▼ LESSON 5

Classes in Java—II
OVERVIEW
Java classes have some additional features that aid program
development. For example, class methods may be called with varying
numbers and types of parameters by using overloading. Two keywords,
static and final , can be used to further adjust the behavior of class
members. Another useful mechanism is the finalize method, which
performs clean-up work when a class instance is destroyed.

LESSON TOPICS
● Method Overloading

● Constructors

● Encapsulation

● Access Specifiers

● Comparing Objects

● Class Variables

● Class Methods

● Finalization

94 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Apply overloading mechanisms.

➤ Employ the static and final keywords.

➤ Use initialization syntax.

➤ Understand finalization methods.

➤ Write complete Java classes.

➤➤➤ METHOD OVERLOADING

Overloading means declaring a method with the same name, more than
once. To distinguish between the different versions, the compiler uses the
supplied parameter list. In other words, a method is identified by its signa-
ture, made up of both the name and the types of its parameters. The return
type of a method is not a part of its signature. An overloaded method must
differ from other methods of the same name in number and/or types of
arguments:

➤ public double dothis (Circle cx) {...}

➤ public void dothis (double x) {...}

➤ public void dothis () {...}

A method’s return type does not distinguish it:

When a call to an overloaded method is made, the compiler must perform
overload resolution to determine which method is being called. The com-
piler considers all the methods of the same name and number of arguments

public double dothis (Circle cx) {...}
public void dothis (Circle cx) {...}
//
// ERROR: these methods conflict
//

LESSON 5: Classes in Java—II 95

L
E

S
S

O
N

 5
as the call, compares the actual types of arguments of the call with the for-
mal argument types of the methods, and chooses the appropriate method.

➤➤➤ CONSTRUCTORS

A constructor is a special method that initializes a newly instantiated object.
Constructors have the same name as the class and no return type, not even a
void. They can take any number of arguments. They are called whenever a
class is instantiated, and are therefore used to initialize that instance. Con-
structors can be overloaded, so a class programmer can offer various ways for
a class user to instantiate and initialize the class.

The following example gives the Box class two constructors:

If a class does not provide any constructor explicitly, the compiler generates
one that uses no parameters and is sometimes called the default constructor. If
a class provides any constructor, the compiler does not provide this no-
parameter version.

A constructor can use the keyword this() as a method to call a different
overload of that class’s constructor. This can help avoid redundant coding:

Instance variables are already initialized by the time the constructor executes.
The constructor need only perform additional initialization.

WARNING

While there may be
multiple constructors
for a single class,
they must differ
somehow in the
number or types of
arguments. There
cannot be two con-
structors for one
class with exactly the
same number and
types of arguments.

public class Box {
double height, width;

public Box(double hw) {
height = width = hw;

}

public Box(double h, double w){
height = h;
width = w;

}
...

}

WARNING

A different construc-
tor from within one
constructor may not
be called with the
usual new method,
since that would cre-
ate a brand new
object instead of call-
ing a different con-
structor as part of
building the current
object.

public Box(double s) {
this(s, s);

}

96 JAVA PROGRAMMING: PART 1
A new operation always calls a constructor to fully initialize a new object.
Remember that the choice of constructor to call depends on normal overload
resolution rules based on the initialization parameters:

➤➤➤ ENCAPSULATION

Encapsulation is combining of behavior and data into the discrete program
units called objects. The programmer hides the data behind a specific inter-
face (usually a purely functional one) that controls access to the data. Encap-
sulation prevents external code from modifying the data directly avoiding
the possibility of unwanted side effects.

By hiding the underlying implementation details, the programmer hides the
way in which an object is represented and manipulated from the rest of the
program. In this respect, encapsulation contributes to program modularity,
as it groups code and data components in discrete, self-contained, and self-
protecting objects. By defining an interface made up only of methods, the
programmer provides a clean interface to the object and limits the actions
that can be performed on it.

A well-defined, fully encapsulated object provides a clear, comprehensive
interface, and takes care of its own security. External code cannot access its
internals—and has no reason to do so.

➤➤➤ ACCESS SPECIFIERS

Classes can be declared public . A public class is accessible by any other
Java class. A class that is not declared public has package access, which means
that only classes within the same package may access it.

Class members can be declared public or private to enforce proper
encapsulation. Certain data elements or methods that are necessary for the
class’s internal behavior should be protected from access by outside classes.
These should be declared private . Class members labelled public are
accessible to all other classes; members labelled private are accessible
only to the code of the class itself. There is also a protected access speci-

Box b = new Box (1.0, 2.0);
// calls: Box (double h, double w)

LESSON 5: Classes in Java—II 97

L
E

S
S

O
N

 5
fier that will be discussed in the lesson on inheritance. A member with no
declared access specifier has package access.

➤➤➤ COMPARING OBJECTS

Through the mechanism of inheritance (discussed in a later lesson), every
Java object has a method called equals() that takes another object as its
argument and returns true if the target object is equal to the argument
object. This sort of equality is not necessarily the same as the one imple-
mented by the == operator, which returns true if and only if its operands
refer to exactly the same object. Types such as String , in which equality
depends on the value of an object and not simply the object’s identity, rede-
fine the equals() method to compare values instead of references.

To compare the values of two objects, use the equals() method:

The behavior of equals() depends on the class. The default behavior is to
compare object identities just as the == operator does. Where appropriate, it
compares values.

➤➤➤ CLASS VARIABLES

Normally, variables declared in a class are instance variables, which appear
once per instance of the class. It is sometimes useful to define variables that,
like global variables in other programming languages, are unique and persist
throughout the lifetime of the program.

A Java class can have data members that appear once per class, rather than
once per instance, and persist for the duration of the program. These mem-
bers are called class variables.

if (r2.equals (r1)) {
...

}

98 JAVA PROGRAMMING: PART 1
To declare a variable of this sort, add the modifier static to a class vari-
able declaration:

Within the class, a class variable may be referred to by just its name and no
qualifier. Outside the class, the variable name must be qualified by either an
instance of the class or the name of the class. Qualifying a class variable by
an instance of the class is identical to accessing an instance data member.
Since class variables are associated with a whole class and not any particular
instance, accessing a class variable does not require an instance of the class.
A class variable may be qualified by applying the dot operator to the class
name, as if the class name were a class instance.

Class Initialization

Class variables may be initialized in the class definition. The required syntax
is identical to initialization of instance variables. Any variable not explicitly
initialized receives the default value for its type.

The initialization takes place when the interpreter first loads the class. Addi-
tionally, a class may specify arbitrary initialization code to be run when the
class is loaded. This is accomplished by using a static initialization block. The
syntax for defining a static initialization block is the keyword static fol-
lowed by the body of a method. A class may have more than one static ini-
tialization block. When a class is loaded, all its static initialization blocks
and static variable initializations execute in the order in which they appear in
the source file.

NOTE

This is similar to the
use of static for
class members in
C++.

public class Box {
double height, width;
static int BoxCount = 0;

public Box(double h, double w) {
height = h;
width = w;
BoxCount += 1;

}
...

}

TIP

Static initialization
blocks can be used to
assign the results of
a complex computa-
tion to be the initial
value of a certain
static variable. You
are not limited to
using constant values
for initialization.

LESSON 5: Classes in Java—II 99

L
E

S
S

O
N

 5
The following is an example of static initializer blocks:

final Variables

A class-member variable can be declared with the modifier final meaning
that its value cannot be changed in other parts of the code once the variable
is initialized. Java has reserved C’s keyword const though it currently has
no meaning.

A class variable declared final is a class-wide constant. Constants are
often declared public to make them available program-wide.

NOTE

Java does not have
any preprocessor and
thus does not sup-
port constants in the
sense of C’s
#define directive.

public class Box {
static int num_of_Boxs = 0;
static float peculiar;

static // a static initializer
{

peculiar = 2.7f + 15;
}
...

}

TRIVIA

Java designers
reserved the const
keyword to avoid
potential confusion
from C/C++ program-
mers inadvertently
using const in Java.

class Trig {
public static final float PI = 3.14159;

... more stuff ...
}

float zz;
zz = 2.0f * Trig.PI;

100 JAVA PROGRAMMING: PART 1
Variables declared static and final are true program constants:

➤➤➤ CLASS METHODS

As discussed in the preceding section, class variables (as opposed to instance
variables) exist before any instances are created. Sometimes the class also
needs methods that refer to those variables, and those methods need to be
callable by outside code before any instances have been created. Such meth-
ods can be declared with the static modifier and are called class methods,
because they apply to class variables and not to instances of the class. The
following code gives an example of a class method:

Outside of a class, class methods can be called either by class name or
through an instance:

WARNING

If a variable is
declared final but not
static, it could have
different values in dif-
ferent instances of
the class. This can be
confusing if the pro-
grammer expects
this variable to be a
true constant. It sel-
dom makes sense to
use final without
static.

// create constant suit values
public class Suit {

public final static int DIAMONDS = 0;
public final static int CLUBS = 1;
public final static int HEARTS = 2;
public final static int SPADES = 3;

}

// create a mathematical constant
public class Trig {

public static final float PI=3.1416f;
}

WARNING

If a static method
tries to access an
instance variable,
there will be a com-
piler error.

public class Thing {
static int value = 3;
public static void resetValue (int val) {

value = val;
}
...

}

Thing.resetValue(9);
Thing th = new Thing(6);
th.resetValue(9);

LESSON 5: Classes in Java—II 101

L
E

S
S

O
N

 5
Class methods can access class variables, but cannot access instance variables.
Because class methods may be called with no instances available, they are
not given a this reference like instance methods.

It is a common practice to define classes that contain only static members.
Since such a class has no instance data or methods, instantiating it is useless.
Such a class is nothing but a wrapper for a related set of global methods and/
or data—a wrapper made necessary by the absence of true globals in Java.

➤➤➤ FINALIZATION

When class objects are created, the appropriate constructor is called. What
happens when objects go away? In C++, classes can implement a destructor
that releases memory when the object is destroyed. Unlike C++, Java does
not require a destructor, because memory is not directly allocatable. How-
ever, class objects may still create conditions that must be manually undone,
such as closing files opened for I/O.

In Java, classes may define a method called finalize() . If
finalize() exists for a class, it is called just before an instance of that
class is destroyed. The compiler generates a default finalize() method
if a class does not provide one. Note that the exact time that finalize()
is called can never be predicted, simply because the exact time of garbage
collection (i.e., actual destruction of objects) cannot be predicted. Under
some circumstances, such as when the interpreter exits at the end of a pro-
gram, it is possible that finalize() might never be called. Thus, the pro-
grammer of a class should never rely on finalize() to do critical tasks.
finalize() is only useful to free system resources, such as open files and
network connections. A finalizer method is declared by naming it final-
ize() with no parameters and a void return value.

NOTE

Notice this important
distinction in how
constructors are
declared and final-
ized. Constructors
have no return type,
but finalize must have
void as a return type.
Unlike constructors,
finalize has only one
option for argu-
ments—no argu-
ments.

102 JAVA PROGRAMMING: PART 1
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Overloading allows a method to have more than one signature.

➤ Variables declared static apply to the whole class not to specific
instances.

➤ Variables declared final cannot be changed after they are initialized.

➤ Finalization carries out various tasks when a class instance is no longer
needed.

LESSON 5: Classes in Java—II 103

L
E

S
S

O
N

 5
1. If a class is not declared public , then who can instantiate the class?

2. What is the keyword that declares a variable to be constant?

3. What is the keyword that declares a method to be a class method rather
than an instance method?

Answers on page 197

REVIEW QUESTIONS

104 JAVA PROGRAMMING: PART 1
1. Expand the Clock class to support a tick() method. The tick()
method increments the current time by one second. Add an empty
main() method to class Clock , so that you can run the class (see
FirstApp.java for an example of a runnable main() method).

Write test code that instantiates and uses class Clock in main() .

Test the clock’s transitions from hour to hour, minute to minute, AM to
PM.

Compile and run the test.

2. Create a class called MathTechniques that supports the following con-
stant and methods:

• pi - 3.14159

• areaOfRectangle that is passed a height and a width

• perimeterOfRectangle that is passed a height and a width

• areaOfCircle that is passed a radius

• perimeterOfCircle that is radius

3. Create a separate class to test out the MathTechniques class.

EXERCISE

▼

▼
▼ LESSON 6

Arrays and Strings
OVERVIEW
The array is a useful construct that stores an indexed collection of
identical objects. Perhaps the most useful application of arrays in Java is
the character string. A string is an object and may be readily assigned,
copied, and accessed. A string cannot, however, be modified.

LESSON TOPICS
● Java Arrays

● Array Constants

● Using Arrays

● Copying Array Elements

● String Objects

● String Methods

● String Concatenation

● Converting Objects to Strings

● Converting Strings to Numbers

106 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Work with Java arrays.

➤ Work with Java string objects.

➤➤➤ JAVA ARRAYS

Arrays are ordered collections of identical objects that can be accessed via an
index. In C and C++, an array is implemented as a contiguous block of
memory accessed via pointers to the elements. In Java, arrays are first-class
objects. Java arrays have their own behavior that is encapsulated into their
definition when the compiler creates them. Since arrays are objects, array
variables behave like class-type variables. It is important to distinguish
between the array variable and the array instance to which it refers. Declar-
ing an array only declares the array variable. To instantiate the array, the new
operator must be used with the [] operator to enclose the array size. The
array size can be any integer expression.

The following code declares an array variable and initializes it to null:

This can also be written as:

To declare an array variable and initialize it to refer to a new instance, use the
following syntax:

NOTE

Arrays are neither a
true class (there is no
class called Array),
nor a built-in type
(Arrays have mem-
bers like a class).
Arrays in Java are in
between a class and
a data type although
they are imple-
mented as a class
internally by Java.

char data[] = null;

char[] data = null;

int length = 60;
char[] data = new char [length];

LESSON 6: Arrays and Strings 107

L
E

S
S

O
N

 6
Array elements are always initialized according to their type as shown in
Table E.

➤➤➤ ARRAY CONSTANTS

The declaration of an array must include its type, but not its size. Arrays
may be initialized with conventional initialization syntax. An array initializer
is either an expression (such as a new expression) that evaluates to the cor-
rect array type, or a list of initial element values enclosed in { }. This latter
notation is borrowed from C/C++. In Java, this is called an array constant.
Any expression can be used for the initial array element values. (C requires
initializers be compiler-time calculable; both C++ and Java allow initializers
to be run-time calculable.)

The following array constant provides initial values for its elements:

Each element of an array of class-type objects behaves like a class-type vari-
able:

➤ Elements may be allocated by new, making them initially null:

➤ Elements may be initialized in an array constant:

TABLE E. Array Initialization

Type Initialization

integers and floating point zero

characters null

booleans false

class-type objects null

int[] int_array = {1, 3, 4, 15, 0};

Box[] boxes = new Box [100];

Box b = new Box (2.2, 3.3);
Box[] boxes = { b, new Box (1.1,2.2) };

108 JAVA PROGRAMMING: PART 1
➤➤➤ USING ARRAYS

Array elements can be accessed using C notation (an index in square brack-
ets, [n]), where the index must be an integer. Like arrays in C, arrays start
with index number 0, not 1. The index can be thought of as an offset from
the beginning of the array.

The index may not be less than zero or greater than the declared size. If the
array is declared size n, the index must be in the range 0 to n-1 . Unlike C,
arrays are not implemented as pointers, so programming techniques like
negative array indexing are not allowed. Any attempt to index an array with
an illegal value will cause an exception to be thrown.

All arrays have a data field called length that indicates its size. This value
is read-only, and contains the number of elements in the array:

Since length is read-only, its value cannot be changed manually:

➤➤➤ COPYING ARRAY ELEMENTS

The library method System.arraycopy() is useful for copying a num-
ber of elements from one array to another. The method can be used on any
type of array and is declared as follows:

The method copies elements from the given source array, beginning at the
specified position to the destination array at the specified position. It copies

NOTE

The length() in
String is a method
while the length in
array is a data mem-
ber.

int ia[] = new int[100];
for (int i = 0; i < ia.length; i++)
{

ia[i] = i * i;
}

ia.length = 20; // error

public static void
arraycopy (Object src, int src_position,

Object dst, int dst_position, int length)

LESSON 6: Arrays and Strings 109

L
E

S
S

O
N

 6
the number of elements specified by the length argument. The destina-
tion array must already be allocated.

Any type of array may be copied. If range exceeds bounds of either array, a
run-time error results.

➤➤➤ STRING OBJECTS

The Java String class (java.lang.String) is a class of object that
represents a character array of arbitrary length. While this external class can
be used to handle string objects, Java integrates internal, built-in strings into
the language. This string literal is one way these strings can be used:

This is actually an object of type String having the value of the quoted
character array, which is the most common way to instantiate a string object.
However, the String class does contain several constructors, listed in
Table F.

Strings can be used like any other type of Java object:

An important attribute of the String class is that once a string object is
constructed, its value cannot change (note that it is the value of an object that

“This is a quoted string literal ”

TABLE F. String Constructors

Description Syntax

construct an empty string String ()

copy a string String (String str)

initialize with a char array String (char[] chars)

initialize with an ASCII byte array String (byte[] bytes, int hibyte)

void printMsg (String userName)
{

String msg1 = “Hello, “;
String msg2 = userName;
if (msg2 == null)

msg2 = “anonymous user”;
System.out.println (msg1 + msg2);

}

110 JAVA PROGRAMMING: PART 1
cannot change, not that of a string variable, which is just a reference to a
string object). All String data members are private, and no string method
modifies the string’s value.

➤➤➤ STRING METHODS

Although a string represents an array, standard array syntax cannot be used
to inquire into it. Instead, the String class provides equivalent methods
that allow access to a string’s value or any part of it. These are detailed in
Table G.

String Comparison

Since string variables are Java class-type variables, the equality (==) operator
compares whether two strings are the same object, not whether they have

TABLE G. String Methods

Method Description Example

int length() Returns the number of characters in
the string

String str = “Another
string”;
int len = str.length
();

char charAt (int index) Extracts one character from the string char first = str.charAt
(0)
char last = str.charAt
(len - 1)

void getChars (int srcBegin,
int srcEnd, char[] dest, int
destBegin)

Extracts a range of characters from
the string into a character array

getChars(3, 6, word,
0);

String substring (int begin) Return the substring of this string
delimited by character position begin
and the end of the string

String s3 = str.sub-
string (8);

String substring (int begin,
int end)

Returns the substring of this string
delimited by character position begin
(inclusive) and character position end
(exclusive)

String s1 = str.sub-
string (0, 7);

LESSON 6: Arrays and Strings 111

L
E

S
S

O
N

 6
the same value. To compare string values, use the equals() method com-
mon to all objects, or one of the other methods listed in Table H.

TABLE H. More String Methods

Method Description Example

boolean equalsIgnoreCase (String
otherString)

Returns true if this string
value equals the other,
considering letters equiva-
lent regardless of case

if (s1.equalsIgnoreCase
(s2)) { ... }

int compareTo (String otherString) Returns zero if the string
values are equal, a nega-
tive value if this string is
less than the other, or a
positive value if this string
is greater than the other

if (s1.compareTo (s2) >
0) {

String temp = s1;
s1 = s2;
s2 = temp;

}

boolean startsWith (String prefix) Returns true if this string
starts with the other
string

if (s1.startsWith (s2))
{ ... }

boolean endsWith (String suffix) Returns true if this string
ends with the other string

if (s1.endsWith (s2)) {
... }

boolean regionMatches (int thisBe-
gin,
String otherString, int otherBegin,
int length)

General string region
comparison

if (s1.regionMatches(0,
s2, 5, 10)
{...}

boolean regionMatches (boolean
ignoreCase, int thisBegin, String
otherString,
int otherBegin, int length)

General string region
comparison, with option
of case insensitivity

if (s1.region-
Matches(true, 0, s2, 5,
10) {...}

112 JAVA PROGRAMMING: PART 1
String Searching

The String class also provides methods that search a string for the occur-
rence of a single character or substring. These return the index of the match-
ing substring or character if found, or -1 if not found.

➤ int indexOf (char ch)

➤ int indexOf (char ch, int begin)

➤ int lastIndexOf (char ch)

➤ int lastIndexOf (char ch, int fromIndex)

➤ int indexOf (String str)

➤ int indexOf (String str, int begin)

➤ int lastIndexOf (String str)

➤ int lastIndexOf (String str, int fromIndex)

The following example shows the usage of these functions:

if (s1.indexOf (’:’) >= 0) { ... }

String suffix =
s1.substring (s1.lastIndexOf (’.’));

int spaceCount = 0;
int index = s1.indexOf (’ ’);
while (index >= 0)
{

++spaceCount;
index = s1.indexOf (’ ’, index + 1);

}

int index = s1.indexOf (“that”);

LESSON 6: Arrays and Strings 113

L
E

S
S

O
N

 6
Other String Methods

The String class provides miscellaneous methods for manipulating string
data. Each of the methods listed below returns a new string instead of mod-
ifying its given string. (string objects are immutable by design).

➤➤➤ STRING CONCATENATION

The String class provides a method for concatenating two strings:

The + and += String operators are more commonly used:

The Java compiler recognizes the + and += operators as String operators.
For each + expression, the compiler generates calls to methods that carry out
the concatentation. For each += expression, the compiler generates calls to
methods that carry out the concatenation and assignment.

String replace (char oldChar, char newChar)
// Replaces all occurrences of oldChar with newChar.
// For example:
s2 = s1.replace (’ ’, ’_’);

String toLowerCase ()
// Converts all upper case characters to lower case.
// For example:
s2 = s1.toLowerCase ();

String toUpperCase ()
// Converts all lower case characters to upper case
// For example:
s2 = s1.toUpperCase ();

String trim ()
// Removes leading and trailing white space
// For example:
s2 = s1.trim ();

NOTE

C++ programers
should note that the
+ and += String
operators are built
into the Java lan-
guage; and that Java
does not allow pro-
grammer- defined
operators.

String concat (String otherString)

String fname = s1 + “.txt”;
String path = s1 + “/” + s2 + “.txt”;

114 JAVA PROGRAMMING: PART 1
➤➤➤ CONVERTING OBJECTS TO STRINGS

The String + operator accepts a non-string operand, provided the other
operand is a string. The action of the + operator on non-string operands is
to convert the non-string to a string, then to do the concatenation. Oper-
ands of native types are converted to string by formatting their values. Oper-
ands of class types are converted to a string by the method toString()
that is defined for all classes. Any object or value can be converted to a string
by explicitly using one of the static valueOf() methods defined in class
String :

If the argument to valueOf() is of class type, then valueOf() calls that
object’s toString() method. Any class can define its own toString()
method, or just rely on the default. The output produced by toString()
is suitable for debugging and diagnostics. It is not meant to be an elaborate
text representation of the object, nor is it meant to be parsed.

These conversion rules also apply to the right-hand side of the String +=
operator.

➤➤➤ CONVERTING STRINGS TO NUMBERS

Methods from the various wrapper classes, such as Integer and Double ,
can be used to convert numerical strings to numbers. This is often necessary
for command line arguments where the parameter list is available to the
main () method as a string array.

The wrapper classes contain static methods (such as parseInt())
which convert a string to its own internal data type. These can be used with
class names rather than creating a separate object. Be aware that these par-

String str = String.valueOf (obj);

LESSON 6: Arrays and Strings 115

L
E

S
S

O
N

 6
ticular conversion methods throw a NumberFormatException and
must be used in the context of a try and catch block combination.

import java.io.PrintWriter;

public class ArgTest {
 public static void main(String[] args) {

int i, j;
// Create an stdout object
PrintWriter stdout =

new PrintWriter(System.out, true);
// Make sure we have parameters
if (args.length == 0) {

stdout.println("No arguments");
System.exit(1);

}
// Loop through the args array
for (i = 0; i < args.length; i++) {

try {
j = Integer.parseInt(args[i]);
stdout.println(j + " is an integer");

}
catch (NumberFormatException e) {

stdout.println(args[i] + " is not an integer");
}

}
 }
}

116 JAVA PROGRAMMING: PART 1
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Arrays are fixed-size, indexed collections of data elements, all of the
same type.

➤ The Java run-time system catches out-of-bounds array indexes.

➤ Array variables behave like class-type variables.

➤ If an array contains class-type elements, then each element behaves
like a class-type variable.

➤ Java strings are objects of class String .

➤ Java strings are immutable.

➤ Java recognizes + and += concatenation operators.

LESSON 6: Arrays and Strings 117

L
E

S
S

O
N

 6
1. What is wrong with the following code:

2. Using two different methods, add the text “ball” onto the end of a
String sport already containing the text “base.” Store the result in
String new_sport .

Answers on page 197

REVIEW QUESTIONS

int arr[] = new int[50];
arr.length = 25;
for (int i = 0; i < arr.length; i++)
{

arr[i] = 0;
}

118 JAVA PROGRAMMING: PART 1
1. Write a class named FloatArray that represents an array of double-
precision floating point values. Class FloatArray ’s first constructor
takes one argument of type integer that specifies the size of the array.
The initial value of the array elements is zero. Do not try to handle
invalid size values.

Class FloatArray ’s second constructor takes two arguments: the
array size and a double that specifies the initial value of all the array ele-
ments.

Write a getValue() method that returns a value from the array, given
the index of the element.

Write a setValue() method that sets a value in the array, given the
index of the element.

Write a getAverage() method that returns the average of all values
in the array.

Write a runnable main() method that tests the class floatarray .

Compile and run the class.

2. Write a static method called removeString . (You may create a new
class for your method, or work in one you have already written.)
removeString has the following signature:

The function of removeString is to remove all occurrences of the
given substring in the given string. For instance, the following call
results in the string dated :

EXERCISE

public static String removeString
(String string, String substring)

String result = removeString (“undaunted”,"un")

▼

▼
▼ LESSON 7

Inheritance
OVERVIEW
Inheritance is a powerful feature that allows new classes to be derived
from existing ones. The derived class inherits the interface of the base
class and can add new methods or change existing ones to suit its purpose.
Any number of classes can be added to an inheritance scheme to produce a
hierarchy of related types. The Java implementation of inheritance
supports polymorphism, which allows objects of different types to be
treated as if they were of the same type.

LESSON TOPICS
● Introduction to Inheritance

● Protected Access

● Overriding Methods

● Constructor Chaining

● Inheritance and Finalization

● Abstract Classes

● Interfaces

● Casting Between Class Types

120 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Read and understand source code for derived classes.

➤ Derive a new class.

➤ Define a set of classes that behave polymorphically.

➤ Take advantage of Java’s run-time typing.

➤➤➤ INTRODUCTION TO INHERITANCE

Developers working with object-oriented languages visualize classes as being
related to each other in hierarchies of “kind of” relationships. Just as pro-
grammers generalize the common features of objects in an abstract data
type, they also identify and abstract common features of similar types in a
superclass. Once the superclass is defined, each subclass is defined as a “kind
of” the superclass, so that it can then inherit the common features. The pro-
grammer need only specify the behavior that sets the subclass apart from its
parent and its siblings. Java programmers say that the subclasses are derived
from the superclass, and refer to them as derived types and base types, respec-
tively.

Programmers conceptualize programs both upward and downward, through
levels of abstraction during the design and implementation stages of a devel-
opment cycle. However, it is observed that they usually tend to think pre-
dominantly from the bottom up during the design phase, and predominantly
top down during the implementation phase. Once the characteristics of a
superclass are well described, its interface can be written before the sub-
classes are developed. Each subclass inherits both its superclass’s interface
and its implementation. It modifies and extends the former, or extends only
the latter, as needed. The use of inheritance produces a hierarchy of classes.

For example, it is relatively easy to proceed downward from a base class like
bank-account to more specialized classes of accounts, provided that the
analysis and design phases are complete. By contrast, it is much more diffi-
cult proceeding upward, i.e., to try and code many different kinds of bank
accounts first, and then coordinating all their differing interfaces into a
superclass.

LESSON 7: Inheritance 121

L
E

S
S

O
N

 7
Example of Inheritance

An example of inheritance where a programmer might identify a need for
two types of text objects would be CompactText and WordProcText .
CompactText emphasizes storage efficiency rather than functionality and
WordProcText is used for word processing that contains font informa-
tion. While the differences between the text objects are significant enough
to warrant implementing them as different classes, the similarities that exist
between them suggest the presence of certain shared properties and the pos-
sibility of their belonging to one superclass.

In this case, rather than creating two largely similar class definitions, a
superclass called TextObject can be first defined. This establishes a com-
mon interface for the two. From this base class, the classes CompactText
and WordProcText are derived. Each derived type inherits its interface
and implementation from the base type. For example, all of the classes have
a length() method. The base class might or might not provide a default
implementation for this method. If the base class does provide a default
implementation, the derived classes can inherit the implementation as their
own. A derived class can override or extend the implementation of an inher-
ited method as appropriate. A derived class may not change the interface of
a method. CompactText might use the implementation of the
length() method defined in TextObject , while WordProcText
might override this implementation with its own.

Perhaps it is only later that an EncodedText type is needed. If an inherit-
ance relationship exists, then implementing the new type becomes much
simpler. Whether or not derived classes are created at the same time as their
base class, each of the derived types extends the interface or implementation
of the base class.

Establishing a sensible hierarchy of related types is one of the most challeng-
ing aspects of object-oriented program design. It is not easy to generalize a
base type in a manner that not only abstracts the common behavior of the
types already known, but also provides a good basis for the later derivation of
new types. An important reward for utilizing inheritance is a dramatic
increase in code reuse, which can save a programmer time and valuable
resources.

122 JAVA PROGRAMMING: PART 1
Derivation Syntax

The keyword extends in the subclass definition below declares one class
as a subclass of another. A Java class may derive from at most one base class.

Any user-defined class that does not explicitly derive from another class
derives from the library class java.lang.Object . The Object class is
therefore the ultimate base class of all other Java classes. The Object class
provides the equals() method as well as other features common to all
Java objects.

Effects of Inheritance

In Java, private methods of the base class are not inherited (the derived class
cannot call them anyway), but everything else is inherited.

A derived-type object can be said to have a dual identity. It is a type of both
its new class and its parent type. For example, if class Bass is derived from
Fish , an object of type Bass is both a Bass and a Fish . However, the
reverse is not necessarily true. The programmer, in this case, must force a
conversion from base class type to derived class type with an explicit cast:

public class TextObject
{

public int length () { ... }
}

public class CompactText
extends TextObject

{
}

public class WordProcText
extends TextObject

{
}

BaseClass Obj1; /*...*/
DerivedClass Obj2=(DerivedClass) Obj1;

LESSON 7: Inheritance 123

L
E

S
S

O
N

 7
➤➤➤ PROTECTED ACCESS

In addition to public , private and default (package-friendly) member
access, there are two other access specifiers that apply only to derived classes.
Any member that is declared protected is accessible only by a class that
is derived from the current class or is in the same package as the containing
class. Any member that is declared private protected is accessible
only by a class that is derived from the containing class.

Consider the following example:

Member x is accessible to any class that derives from class A and to any class
in the same package as class A. Member y is only accessible to any class that
derives from class A.

Figure 5 below shows the relationship between classes with different access
specifiers.

NOTE

Since Java has the
concept of a package,
(a grouping of
classes), Java offers a
few additional combi-
nations of access
options as compared
with C++.

public class A
{

protected int x;
private protected int y;

}

124 JAVA PROGRAMMING: PART 1
FIGURE 5
Accessibiliy in an inheritance
relationship

Table I details access to class A’s members.

➤➤➤ OVERRIDING METHODS

The process of a derived class redefining a method contained in the parent
class (with the same parameter types) is called overriding the method.
Whenever a method is called for a derived-type object, the compiler calls
the overriding version instead of the inherited version. The method is thus

TABLE I. Access to class A’s members

Access specifier Accessible by classes:

public A, B, C, D, E

protected A, B, C, D

default A, B, C

private protected A, B, D

private A

Class E

Package Stuff

Class DClass B

Class A

(derived)Class C

Package Things

LESSON 7: Inheritance 125

L
E

S
S

O
N

 7
implemented in a way that is unique to the derived class. The following is a
syntax example:

This allows a programmer to use a parent type variable to point to a derived
type object, call a method for that object, and have the compiler call the spe-
cialized version. This is how polymorphism is implemented. C++ program-
mers will recognize this as a virtual function. In Java, all methods are virtual
unless specified otherwise.

Dynamic Method Dispatching

Consider the following example:

The compiler cannot tell at compile-time which method to call here. The
solution entails waiting until run-time to determine which function is the

public class TextObject
{

public int length ()
{

// TextObject’s implementation
}

}

public class CompactText
extends TextObject

{
public int length ()
{

// CompactText’s implementation
}

}

class Fish { void eat(), other items... }

class Bass extends Fish { void eat() ... }
class Shark extends Fish { void eat() ... }

Fish redfish, bluefish;
redfish = new Bass();
bluefish = new Shark();

redfish.eat();
bluefish.eat();

126 JAVA PROGRAMMING: PART 1
correct one. In other words, the run-time code must check the actual type
rather than the apparent type of an object based on the name of the variable
used in the code. This is known as dynamic method dispatching.

Polymorphism

Dynamic method dispatching is a major component of polymorphism. Poly-
morphism is a very powerful feature of object-oriented languages. It allows a
program to treat objects of different types as if they were all of the same
type.

The creator of a group of related data types designs them to respond to the
same message in ways that are nominally identical, no matter how different
they may be in detail. The code which defines and uses objects of these types
can then send the same message to all of them and get an appropriate
response from each.

A user program can create heterogeneous lists of objects of related types and
invoke a virtual function for each one of them. At run time, the program will
branch to the version of the function that is appropriate to that object.

This is accomplished by the following manner. When a class declares a
member function, the compiler includes a type code in every object of that
class. Wherever the function is invoked, the Java run-time system checks the
type of each object and invokes the function appropriate to that object’s spe-
cific class. By automating type checking, polymorphism eliminates the need
for many of the large switch statements that tend to infest C programs.
Coding these is notoriously tedious, mechanical, and error-prone. Such
statements also require maintenance whenever a new class of data is intro-
duced, even if that class is closely related to others.

In contrast, the addition of a new data type typically has much less effect on
programs that use polymorphism. Since code that requests a string’s length
pays no attention to the particular string type, the compiler neither knows
nor cares that some of the string types were introduced after the code was
written. Such code therefore requires less initial development effort as well
as less maintenance.

TRIVIA

The key difference
here, compared to a
traditional non-poly-
morphic approach, is
that differences in
behavior are internal-
ized in different
derived classes. This
differs from an exter-
nal body of code
selecting a certain
behavior from a list of
options.

LESSON 7: Inheritance 127

L
E

S
S

O
N

 7
The following polymorphism example invokes the length() method of
each element of an array of TextObject s:

The code that invokes the length() method ignores type differences.
New types of TextObject s can be introduced without forcing changes in
calling code.

The super Keyword

It is often desirable for an overriding implementation of a method to call the
inherited implementation of the method. Often, the inherited code need not
be completely replaced, only augmented to add some new actions. Any
method in a derived class that overrides a method in the base class can call
the corresponding base class method by using the super keyword as shown
below:

TextObject[] tarr =
{

new EncodedText (),
new WordProcText (),
new CompactText (),
new TextObject ()

};

int totalLen = 0;

for (int i = 0; i < tarr.length; ++i)
{

totalLen += tarr[i].length ();
}

public class WordProcText
extends TextObject

{
public int length ()
{

int len = super.length ();
...
return len;

}
}

128 JAVA PROGRAMMING: PART 1
Note that there is no way to access a method overridden more than once.
The following code is illegal:

Final Methods and Final Classes

Dynamic lookup takes time. Therefore, there are some situations where it
should be disabled. Also, there are some methods for which the compiler
must be able to resolve a required action, or for which an overriding version
would be too complicated to implement.

Methods labeled final , private , or static are not subject to dynamic
lookup because they may not be overridden. private methods are simply
not inherited because they would never be callable anyway. static meth-
ods apply to a particular class’s static data and thus make no sense in a deri-
vation. final methods are those designated as not-overrideable for reasons
of complexity or safety.

➤➤➤ CONSTRUCTOR CHAINING

When a derived-type object is instantiated, it is sometimes desirable to have
its constructor call a particular overload of its parent class. This is done with
what looks like a call to the method super() . Often this is used to pass a
particular variable up into a parent class’s constructor. This must be the first
statement in a constructor.

If the programmer does not include a super() call, the compiler will pro-
vide one. The only exception to this occurs when a constructor calls another
constructor via the form this() . In this case, the compiler knows that the
first constructor will call super() .

Constructors do not use dynamic lookup simply because each class has its
own constructor.

super.super.f()

NOTE

final in Java is the
counterpart of
virtual in C++. In
C++ you need to
specify virtual to
get dynamic binding.
In Java you need to
specify final to get
static binding.

LESSON 7: Inheritance 129

L
E

S
S

O
N

 7
Consider the following two classes:

The keyword super can be used to specify which of A’s constructors to call
from B’s constructor:

This use of super() is legal only as the first statement of a constructor. If a
constructor calls neither super() nor this() , the compiler implicitly
calls the base class’s no-parameter constructor as seen in Figure 6.

public class A
{

A(int ix){...}
A(float fx){...}// overloaded

}

public class B extends A
{

B(int ix){...}
}

class B extends A {
{

B(int ix)
{

super(ix);// calls A(int ix)
}

}

130 JAVA PROGRAMMING: PART 1
FIGURE 6
Constructor Chaining

One common mistake is to define a particular constructor in a parent class,
and then derive from it without calling super() . In this case, the compiler
would call the parent class’s no-parameter constructor, but would not have
defined one. This can produce some mystifying error messages.

The appropriate overload must exist in the parent class. Recall that if any
constructor is written, the compiler will not provide the default no-parame-
ter version.

class A

A(){...}

B(float fx)

}

class B extends A
{

B(int ix)

}

{

{
this();

A(float xx){...}

...
}

B(){...}

{super(fx);...}

C om pile r ca lls

A() here

but no t here

LESSON 7: Inheritance 131

L
E

S
S

O
N

 7
The following will produce a compiler error:

➤➤➤ INHERITANCE AND FINALIZATION

If a parent class contains a finalize() method, it must be called explic-
itly by the derived class’s finalize() method. Unlike C++, Java destruc-
tors are not called automatically. If it is needed, the derived class’s
finalize() method must call it manually with:

➤➤➤ ABSTRACT CLASSES

Methods declared with the keyword abstract define a skeleton for a
method but do not implement it. This requires a derived class to provide the
code for this class. A class with one or more abstract methods must itself be
declared abstract and cannot be instantiated. It can only be used for deriva-
tion.

C++ programmers will recognize this as a pure virtual function that makes an
abstract class. A method can be declared abstract with no brackets to enclose
any code.

class A {
int value;
A(int input) { value = input; }

}
class B extends A {

int myvalue;
}

NOTE

in C++, a parent
class’s destructor is
called automatically.
This does not happen
in Java.

super.finalize();

132 JAVA PROGRAMMING: PART 1
FIGURE 7
The relationship between an
abstract class and its derived
classes

A generic shape cannot exist. Each subtype implements its own area()
method.

➤➤➤ INTERFACES

Some languages support multiple inheritance in which a child class may
derive some of its features from one parent class and other features from
another (or others). There is a continuing controversy over whether the ben-
efits promised by this feature justify the extra complexity that comes with it.
Java does not support multiple inheritance. However, it does provide a
mechanism called an interface whereby the properties of one class can be
used by another without formal inheritance. This enables Java to avoid most
of the syntactical complications that multiple inheritance requires. When a
parent class is to be defined as abstract, instead of defining one or more
methods as abstract, the class can be defined with the keyword interface
instead of class . This defines the minimum set of methods a class must
contain.

An interface type is named for derivation with the keyword implements
instead of extends . All of its methods are implicitly public and
abstract . If desired, they can be declared that way for clarity. Also, any
data defined in an interface must be constant (i.e., final static).

class Shape

(derived)

 Circle Square Triangle

abstract float area();

TIP

The rule of thumb in
choosing between an
abstract class and an
interface is as fol-
lows: if you want any
code in the base
class to be reused by
derived classes, use
an abstract class.
Otherwise use an
interface.

LESSON 7: Inheritance 133

L
E

S
S

O
N

 7
The implements Declaration

A derived class cannot have two parent classes, as multiple inheritance leads
to problems of how to decide which method to use for inherited methods.
Yet multiple inheritance is desirable because it lets an object be assigned into,
and thus used as, variables of different types. For example, a programmer
might instantiate a Circle as a class derived from Shape , yet wish to pass
it into a method requiring a Graphic object parameter.

The implements declaration in Figure 7, seen as a way of deriving from
an interface , also means that the new class can be treated as being of
that new type. Though a class can have only one parent class, it can imple-
ment any number of classes, and thus behave as more than one type of
object. For example:

The classes Circle and Square are derived from class Drawable , but
by implementing Shape , they also inherit Shape ’s interface and are
enabled to act as polymorphic instances of Shape.

With interface and implements , Java supports the polymorphic fea-
tures of multiple inheritance, while yet avoiding the complications of meth-
ods implemented in multiple ways.

➤➤➤ CASTING BETWEEN CLASS TYPES

The Java run-time system keeps track of the type of each object. While this
implies some memory space overhead for each object, the programmer can
achieve a type-safe run-time environment. The Java language makes some of

interface Shape{...}

class Circle extends Drawable
implements Shape{...}

class Square extends Drawable
implements Shape{...}

Shape sp1 = new Circle(),
 sp2 = new Square();

sp1.area();
sp2.area():

134 JAVA PROGRAMMING: PART 1
its run-time typing power available to the programmer through the
instanceof operator. The form of an instanceof expression is as fol-
lows:

The left-hand term is any expression that evaluates to a class type. The
right-hand term is the name of a class or interface. An instanceof
expression returns true if the actual type of the object on the left-hand side is
of the type named by the right-hand side, and false otherwise. The object is
of the named type if it is of exactly the named type or is of a type that
directly or indirectly extends the identified type.

The instanceof operator can be use for safe casting between class types:

object-expression instanceof class-name

if (tobj instanceof CompactText)
{

CompactText ct = (CompactText) tobj;
}

LESSON 7: Inheritance 135

L
E

S
S

O
N

 7
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ Inheritance involves defining a class as a specific type of another class.

➤ Inheritance increases code reuse and allows for polymorphism.

➤ Java supports dynamic method dispatch at run-time.

➤ Methods and classes may be declared final .

➤ Abstract methods have no implementation.

➤ Interface types support limited multiple inheritance.

➤ Java’s run-time typing allows safe casting between class types.

136 JAVA PROGRAMMING: PART 1
1. Write the class declarations for the following relationship, assuming that
all classes are public: a Bulldog is a kind of Dog, and a Dog is a kind of
Animal.

2. What is the difference between the protected and
private protected access methods?

3. What is purpose of the super keyword?

Answers on page 198

REVIEW QUESTIONS

LESSON 7: Inheritance 137

L
E

S
S

O
N

 7
1. Create an interface called SecondObserver that defines a single
method, tick() . Go back to your Clock class and make class Clock
implement the SecondObserver interface.

Create a new class called PrintClock that extends your Clock class.
PrintClock provides a method called toString() that produces a
string representation of the current time. Test your class.

2. Create a new class called TickingPrintClock that extends your
PrintClock class. TickingPrintClock extends the tick()
method to print the new time on each tick, in addition to the normal
function of the method.

Test your new class. You can insert the following code block to cause
your program to sleep for one second:

EXERCISE

try
{

Thread.sleep (1000);
}
catch (InterruptedException ie)
{
}

▼

▼
▼ LESSON 8

Writing Java Applets
OVERVIEW
Java applets are graphical mini-programs that run in the context of
another program. Thanks to the growth of the Internet, applets have
become popular additions to World Wide Web pages. This lesson
introduces basic applet methods and the means to embed applets in
HTML documents.

LESSON TOPICS
● What Is an Applet?

● The Applet Class

● The Delegation Event Model—Action Events

● The paint() Method

● The Graphics Class

● Java Fonts

● Drawing Lines and Shapes

● Drawing with Color

● The Color Class

140 JAVA PROGRAMMING: PART 1
➤➤➤ OBJECTIVES

By the end of this lesson, you should be able to:

➤ Create a Java applet.

➤ Embed an applet in an HTML document.

➤ Use graphics library methods to draw in applets.

➤ Use the event model to capture click type events.

➤➤➤ WHAT IS AN APPLET?

An applet is not a standalone application. It is a mini program invoked
within a larger program, such as an applet viewer or a Java-enabled World
Wide Web (WWW) browser. An applet depends on the viewer or browser
to provide a context in which to run. This means that the viewer or browser
implements common applet functions and provides those functions to the
applet by way of a Java Application Program Interface (Java API). The viewer
or browser also controls the execution of the applet.

An applet is graphical by nature. Each applet occupies a rectangular panel in
its viewer's window. Applets are meant to be embedded within a graphical
document, such as an HTML document.

A "Hello, World" Applet

The following is a simple applet named HelloWorldApplet.java :

TRIVIA

The applets make
static documents
come alive. This fea-
ture of Java was a
major reason for its
quick popularity as an
internet language.

NOTE

Without the import
statement, use
java.applet.App
let instead of
Applet ; and
java.awt.Graph-
ics instead of
Graphics .

import java.applet.*;
import java.awt.*;

public class HelloWorldApplet extends Applet
{

public void paint (Graphics g)
{

g.drawString (“Hello World”, 25, 50);
}

}

LESSON 8: Writing Java Applets 141

L
E

S
S

O
N

 8
These import statements bring the classes into the scope of our applet class:

➤ java.applet.Applet

➤ java.awt.Graphics

Without those import statements, the Java compiler would not recognize
the classes Applet and Graphics , which the applet class refers to.

➤➤➤ THE Applet CLASS

Every applet is an extension of the java.applet.Applet class. The
base Applet class provides methods that a derived Applet class may call
to obtain information and services from the browser context. These include
methods that do the following:

➤ get applet parameters

➤ get the network location of the HTML file that contains the applet

➤ get the network location of the applet class directory

➤ print a status message in the browser

➤ fetch an image

➤ fetch an audio clip

➤ play an audio clip

➤ resize the applet

142 JAVA PROGRAMMING: PART 1
Additionally, the Applet class provides an interface by which the viewer or
browser obtains information about the applet and controls the applet's exe-
cution. The viewer may:

➤ request information about the author, version and copyright of the
applet

➤ request a description of the parameters the applet recognizes

➤ initialize the applet

➤ destroy the applet

➤ start the applet's execution

➤ stop the applet's execution

The Applet class provides default implementations of each of these meth-
ods. Those implementations may be overridden as necessary.

The “Hello, World” applet is complete as it stands. The only method over-
ridden is the paint method.

Invoking an Applet

An applet may be invoked by embedding directives in an HTML file and
viewing the file through an applet viewer or Java-enabled browser. The
<applet> tag is the basis for embedding an applet in an HTML file.
Below is an example that invokes the “Hello, World” applet:

The code attribute of the <applet> tag is required. It specifies the
Applet class to run. Width and height are also required to specify the ini-
tial size of the panel in which an applet runs. Note that the size of the applet

<html>
<title>The Hello, World Applet</title>
<hr>
<applet code=”HelloWorldApplet.class” width=320
height=120>
If your browser was Java-enabled, a “Hello, World”
message would appear here.
</applet>
<hr>
</html>

LESSON 8: Writing Java Applets 143

L
E

S
S

O
N

 8
panel is determined in the document, not from within the applet. An applet
may call its resize() method, but the browser is not guaranteed to update
the display. The applet directive must be closed with a </applet> tag.

If an applet takes parameters, values may be passed for the parameters by
adding <param> tags between <applet> and </applet> . The browser
ignores text and other tags between the applet tags. Non-Java-enabled
browsers do not process <applet> and </applet> . Therefore, anything
that appears between the tags, not related to the applet, is visible in non-
Java-enabled browsers. The programmer can take advantage of this feature
to provide filler content for users with older browsers.

The viewer or browser looks for the compiled Java code at the location of the
document. To specify otherwise, use the codebase attribute of the
<applet> tag as shown:

Whether a code base is specified or the default is used, it is important to
keep in mind that the code base is the root directory of the package tree. If
the code is organized into packages, the Java class loader expects to find the
class files in like-named subdirectories of the code base directory. The code
base directory itself is the home of the default package.

If an applet resides in a package other than the default, the holding package
must be specified in the code attribute using the period character (.) to sep-
arate package/class components. For example:

Getting Applet Parameters

The following example demonstrates how to make an applet respond to
setup parameters specified in the document. This applet displays a checker-
board pattern of black and a second color. The second color and the size of
each square may be specified as parameters to the applet within the docu-
ment.

<applet codebase=”http://not.a.real.site/applets”
code=”HelloWorldApplet.class” width=320 height=120>

<applet code=”mypackage.subpackage.TestApplet.class”
width=320 height=120>

144 JAVA PROGRAMMING: PART 1
CheckerApplet gets its parameters in the init() method. It may also
get its parameters in the paint() method. However, getting the values
and saving the settings once at the start of the applet, instead of at every
refresh, is convenient and efficient. The applet viewer or browser calls the
init() method of each applet it runs. The viewer calls init() once,
immediately after loading the applet. (Applet.init() is implemented to
do nothing.) Override the default implementation to insert custom initial-
ization code.

The Applet.getParameter() method fetches a parameter given the
parameter's name (the value of a parameter is always a string). If the value is
numeric or other non-character data, the string must be parsed.

The following is a skeleton of CheckerApplet.java :

import java.applet.*;
import java.awt.*;

public class CheckerApplet extends Applet
{

int squareSize = 50;// initialized to default size

public void init () {}

private void parseSquareSize (String param) {}

private Color parseColor (String param) {}

public void paint (Graphics g) {}
}

LESSON 8: Writing Java Applets 145

L
E

S
S

O
N

 8
Here are CheckerApplet ’s init() and private parseSquare-
Size() methods:

The applet calls parseSquareSize() to parse the squareSize
parameter. parseSquareSize() calls the library method Inte-
ger.parseInt() , which parses a string and returns an integer. Inte-
ger.parseInt() throws an exception whenever its argument is invalid.
Therefore, parseSquareSize() catches exceptions, rather than allow-
ing the applet to fail on bad input.

The applet calls parseColor() to parse the color parameter into a Color
value. parseColor() does a series of string comparisons to match the
parameter value to the name of a predefined color. For more information
concerning parseColor() , refer to the sample library.

public void init ()
{

String squareSizeParam = getParameter (“squareSize”);
parseSquareSize (squareSizeParam);
String colorParam = getParameter (“color”);
Color fg = parseColor (colorParam);
setBackground (Color.black);
setForeground (fg);

}

private void parseSquareSize (String param)
{

if (param == null) return;
try {

squareSize = Integer.parseInt (param);
}
catch (Exception e) {

// Let default value remain
}

}

146 JAVA PROGRAMMING: PART 1
Specifying Applet Parameters

The following is an example of an HTML file with a CheckerApplet
embedded in it. The HTML file specifies both parameters to the applet by
means of the <param> tag.

Parameter names are not case sensitive.

➤➤➤ THE DELEGATION EVENT MODEL—
ACTION EVENTS

Events, such as the clicking of a button or the movement of a scroll bar, can
be intercepted and processed by an applet. The technique used by Java to do
this is called the Delegation Event Model. This model uses the concept that
an object (e.g., a command button) is the source of events; and another object
(e.g., an applet) listens to a source for a specific type of event.

A listener informs the source that it is interested in listening to that source.
The source adds that listener to its list of objects. When an event occurs, the
source informs all interested listeners, and passes information regarding the
event to the listener.

If a listener is interested in an event it must implement a set of methods that
the source can call when the event occurs. This set of methods is called an
interface. The concept of an interface will be discussed in greater depth later
in the course. Having implemented the interface, the source is then able to
call the listener. When a method of the interface is called, a single argument
or an event object is passed that conveys information about the event.

The essential steps required for handling events include:

<HTML>
<TITLE>Checkerboard Applet</TITLE>
<HR>
<APPLET CODE=”CheckerApplet.class” WIDTH=480
HEIGHT=320>
<PARAM NAME=”color” VALUE=”blue”>
<PARAM NAME=”squareSize” VALUE=”30”>
</APPLET>
<HR>
</HTML>

LESSON 8: Writing Java Applets 147

L
E

S
S

O
N

 8
1. Use of the implements keyword by the listener.

2. Adding the listener to the source's event list.

3. Implementing the appropriate methods.

4. Using the event object to process the event.

Step 1: Implement the listener:

The implements keyword is used in the class definition to inform the java
compiler that this class supports a specific type of interface. There are several
types of event interfaces supported by Java. The ActionListener and
AdjustmentListener interfaces are described in this section. The
ActionListener interface deals with high level events such as the press-
ing of a button. The AdjustmentListener is used with controls such as
a scroll bar. Other high and low level interfaces exist.

Step 2: Add the listener to the source's event list:

The addActionListener method is used to add the source (the current
applet) to the list of listeners interested in listening to the button. The this
keyword identifies the current applet as the listener. The method is applied
to the button thus making the button the source object.

Step 3: Implement the appropriate method:a

...
import java.awt.event.*;
public class MyApplet extends Applet implements
ActionListener
{

public void init ()
{

Button b = new Button (“Help”);
b.addActionListener(this);
add (b);

}

public void actionPerformed(ActionEvent evt)
{

148 JAVA PROGRAMMING: PART 1
The ActionListener interface has only a single method, actionPer-
formed . When an interface is implemented by a class, all of its methods
must be overridden by that class. The actionPerformed method is
passed as a single argument, ActionEvent . This argument contains infor-
mation about that event.

Step 4: Process the event:

The actionPerformed method may be invoked by more than one
source if the listener has added itself to other sources. One of the primary
purposes of the ActionEvent object is to differentiate between different
sources. The getSource method returns a reference to the object that
caused the event. It is used with such methods as getLabel , that returns
the button label, to determine the source of the event.

The ActionEvent Class

The ActionEvent class contains the event type ACTION_PERFORMED.
An ActionEvent can be fired by:

➤ clicking a button

➤ double clicking a list

➤ choosing a menu item

➤ pressing <enter> when in a text field

The getSource() method is used to determine the object in which the
event originated.

An action command is associated with each ActionEvent . This com-
mand is a simple String that is assigned to a source object. It is assigned
when the object is created using the setActionCommand method. Later,
the getActionCommand method can be used within such methods as
actionPerformed , to uniquely identify the source of the event. This

if (evt.getSource() instanceof Button)
{

Button source = (Button)evt.getSource();
if (source.getLabel() == “Help”)

/ * ... handle “Help” button ... */

LESSON 8: Writing Java Applets 149

L
E

S
S

O
N

 8
technique avoids having to use a label, or some other attribute of the source,
that may change with the use of the object.

The user may hold down a modifier key such as <ALT> or <CTRL> when
an event is fired. The getModifiers() method can be used to determine
which key was held down. The following masks are provided with the
ActionEvent class for comparison with the modifier constants:

➤ ALT_MASK

➤ CTRL_MASK

➤ META_MASK

➤ SHIFT_MASK

Adjustment Events

Adjustment events are fired when the user manipulates an Adjustable
item, such as a scrollbar or slider control. They are handled similarly to
Action events.

150 JAVA PROGRAMMING: PART 1
To respond to a scrollbar manipulation, implement the
adjustmentValueChanged method of the AdjustmentListener
interface, and query the AdjustmentEvent object:

The AdjustmentEvent Class

The AdjustmentEvent class contains the event type
ADJUSTMENT_VALUE_CHANGED. This event can be fired by:

➤ manipulating a scrollbar

➤ manipulating a custom component (such as a slider)

The getAdjustable() method returns a reference to the component
that fired the event. If that type of adjustment is needed, the getAdjust-

...
import java.awt.event.*;
public class MyApplet extends Applet implements
AdjustmentListener
{

public void init ()
{

Scrollbar sb = new Scrollbar (...);
sb.addAdjustmentListener(this);
add (sb);

}

public void adjustmentValueChanged (AdjustmentEvent evt)
{

switch (evt.getAdjustmentType ())
{

case AdjustmentEvent.UNIT_INCREMENT:
case AdjustmentEvent.UNIT_DECREMENT:
case AdjustmentEvent.BLOCK_INCREMENT:
case AdjustmentEvent.BLOCK_DECREMENT:
case AdjustmentEvent.TRACK:

Scrollbar sb = (Scrollbar)evt.getAdjustable();
int orientation = sb.getOrientation ();
int value = sb.getValue ();
/* ...update display to match value */

}
}

}

LESSON 8: Writing Java Applets 151

L
E

S
S

O
N

 8
ableType() method will return one of the following values which are
defined in the AdjustableEvent class:

➤ BLOCK_DECREMENT

➤ BLOCK_INCREMENT

➤ TRACK

➤ UNIT_DECREMENT

➤ UNIT_INCREMENT

➤➤➤ THE paint() METHOD

The Applet class derives a class within Java's Abstract Windowing Toolkit
(AWT) library, java.awt.Panel . The Java AWT forms a layer between
the viewer or browser and the applet running within it. Every graphical
component in the AWT library, including Panel , derives from
java.awt.Component . The Component class supports a set of meth-
ods for drawing, positioning, sizing, etc. The paint() method is one of
those common methods.

The Java AWT calls the paint() method to completely render the com-
ponent. For example, when the window containing the component is
resized, it may be necessary to repaint certain window components. The
default implementation of paint() does nothing. To draw custom graphi-
cal content in your applet, you must override the paint() method. Its sig-
nature is:

➤➤➤ THE Graphics CLASS

The paint() method takes one parameter, an object of class Graphics .
The object holds a context in which drawing operations may be performed.
The Graphics class provides the methods for drawing; including draw-
Line() (the method that draws a line), and drawString() (the method
that draws text). The paint() method in the “Hello, World” applet calls

public void paint (Graphics g);

152 JAVA PROGRAMMING: PART 1
Graphics.drawString() to draw the text string “Hello, World” at
position (25, 50) within the applet's panel:

FIGURE 8
String placement in Graphics
Class

The Graphics object clips all graphics operations to within the current
draw region.

As shown in the diagram above, the x coordinate of an AWT graphics point
represents the number of pixels horizontally from the left of the panel. The
y coordinate represents the number of pixels vertically from the top.

➤➤➤ JAVA FONTS

A Java font is represented by an object of class java.awt.Font . A Font
object has three attributes:

➤ family

➤ style

➤ size

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

Hello, World

25
50

LESSON 8: Writing Java Applets 153

L
E

S
S

O
N

 8
Java provides five font families, each of which maps to a true font on the host
platform. A font family is identified by a string:

➤ “Helvetica”

➤ “TimesRoman”

➤ “Courier”

➤ “Dialog”

➤ “DialogInput”

There is also a default font family to be used in the event that a font is miss-
ing.

Java provides plain, bold, and italic font styles. Bold and italic may be com-
bined, resulting in four styles, listed in Table J.

The third attribute of a font is its point size.

Selecting a Font

To select a font, the programmer must:

➤ construct a Font object

➤ install a Font object into the Graphics context

The Font constructor takes three arguments:

➤ the family (a string)

➤ style

➤ point size

TABLE J. Java Styles and Their Symbols

Style Symbol

Plain Font.PLAIN

Bold Font.BOLD

Italic Font.ITALIC

BoldItalic Font.BOLD | Font.ITALIC

154 JAVA PROGRAMMING: PART 1
For example:

To install a font into a Graphics context, use the Graphics.set-
Font() method:

➤➤➤ DRAWING LINES AND SHAPES

Below is an example of an applet (called ShapesApplet.java) that
demonstrates some of the drawing functions available through class
Graphics .

Font myFont = new Font ("Helvetica", Font.PLAIN, 18);

public class NewHelloWorldApplet extends Applet
{

static Font myFont =
new Font ("Courier", Font.PLAIN, 18);

public void paint (Graphics g)
{

g.setFont (myFont);
g.drawString ("Hello, World", 25, 50);

}
}

import java.applet.*;
import java.awt.*;

public class ShapesApplet extends Applet
{

public void paint (Graphics g)
{

int left = 0;
int top = 0;
int right = 319;
int bottom = 119;

g.drawRect (left, top, right - left, bottom - top);
g.drawLine (left, top, right, bottom);
g.drawLine (right, top, left, bottom);
g.drawOval (left, top, right - left, bottom - top);

}
}

LESSON 8: Writing Java Applets 155

L
E

S
S

O
N

 8
The arguments to drawLine() are the (x,y) coordinates of the first end-
point and the (x,y) coordinates of the second endpoint. drawLine()
draws a line one pixel wide from the first endpoint to the second endpoint,
inclusive.

The arguments to drawRect() are: the x coordinate of the left edge of
the rectangle, the y coordinate of the top edge of the rectangle, the width of
the rectangle in pixels, and the height of the rectangle in pixels

drawOval() draws an oval within the rectangle specified by its parame-
ters, which are similar in meaning to those of drawRect() .

➤➤➤ DRAWING WITH COLOR

The following example is another applet that demonstrates the use of color
for graphics.

ColorsApplet.java:

import java.applet.*;
import java.awt.*;

public class ColorsApplet extends Applet
{

public void paint (Graphics g)
{

int left = 10;
int top = 50;
int width = 50;
int height = 50;

g.setColor (Color.red);
g.fillRect (left, top, width, height);

left += 100;
g.setColor (Color.yellow);
g.fillRect (left, top, width, height);

left += 100;
g.setColor (Color.blue);
g.fillRect (left, top, width, height);

}
}

156 JAVA PROGRAMMING: PART 1
This applet displays three square tiles of various colors. The method
Graphics.setColor() is used to set the current color.

➤➤➤ THE Color CLASS

The method Graphics.setColor() installs a color into a graphics
context. The color setting remains until another call to setColor() . At
the start of the paint() method, the color installed in the graphics context
is the foreground color of the applet, usually black.

color.red , color.blue , etc., are constant objects of type color ,
defined as static data members in class Color . The entire list of predefined
colors appears in Table K.

If the desired color is not one of the 13 predefined color objects, a new
color object can be constructed. The color constructor constructs a new
color object from RGB values in the range (0, 255). For example,

TABLE K. RGB Color Values

Color Red Value Green Value Blue Value

white 255 255 255

lightGray 192 192 192

gray 128 128 128

darkGray 64 64 64

black 0 0 0

red 255 0 0

pink 255 175 175

orange 255 200 0

yellow 255 255 0

green 0 255 0

magenta 255 0 255

cyan 0 255 255

blue 0 0 255

Color c = new Color (255, 128, 0);

LESSON 8: Writing Java Applets 157

L
E

S
S

O
N

 8
It is sometimes more convenient to express a color in terms of HSB (hue,
saturation, brightness) values. A static method Color.getHSBColor()
exists for this purpose:

HSB values are floating point numbers in the range (0.0, 1.0).

Although these methods allow you to construct millions of different color
values, the number of different colors displayable, at one time, is far fewer.
The Java library internals map each color to the closest available color in the
current model of the display device.

Foreground and Background Colors

Because an applet is an Abstract Windowing Tookit (AWT) component, it
can store two colors: foreground and background. By default, the foreground
and background colors of the applet are inherited from the document. The
colors are usually black on white or black on gray.

These colors may be accessed through the methods getForeground()
and getBackground() , for example:

The colors may be set through the methods setForeground() and
setBackground() , for example:

Before calling the applet's paint() method, the Java AWT fills the panel
with the applet's background color. (The viewer or browser calls the
init() method before the first call to paint() .) At the start of the
paint() method, the color installed in the graphics context becomes the
applet's foreground color.

CheckerApplet takes advantage of this behavior in the paint()
method. Because the Java AWT has already filled the panel with the back-
ground color (black), the paint() method does not need to draw the black
squares. Because the foreground color is already installed in the graphics

 c = Color.getHSBColor (0.5, 0.7, 0.2);

 Color c = getBackground ();

 setForeground (new Color (64, 64, 64));

158 JAVA PROGRAMMING: PART 1
context at the start of paint() , the paint method does not need to call
Graphics.setColor(). paint() simply iterates over the visible
squares, drawing a foreground square whenever the counter is even:

The method size() returns an object of type Dimension , giving the
current width and height of the applet's pane.

public void paint (Graphics g)
{

Dimension sz = size ();
for (int y = 0; y < sz.height; y += squareSize) {

int count = y / squareSize;
for (int x = 0; x < sz.width; x += squareSize) {

if ((count % 2) == 0) {
g.fillRect (x, y, squareSize, squareSize);

}
++count;

}
}

}

LESSON 8: Writing Java Applets 159

L
E

S
S

O
N

 8
➤➤➤ LESSON SUMMARY

In this lesson, you have learned:

➤ An applet is a graphical mini-program that runs in the context of
another program, such as an applet viewer or a Java-enabled WWW
browser.

➤ The <applet> directive is used to embed an applet in HTML docu-
ments.

➤ The Java applet API allow programmers to:

• draw text and graphics into an applet

• work with fonts and colors

160 JAVA PROGRAMMING: PART 1
1. What is the fully qualified name of the base class of all applets?

2. What is the name of the method that fetches the value of an applet
parameter?

3. Write the full HTML applet tag that starts an applet named
Shape.class at a width of 200 and a height of 100. It also takes a
color parameter equal to red and a size parameter equal to 10.

Answers on page 198

REVIEW QUESTIONS

LESSON 8: Writing Java Applets 161

L
E

S
S

O
N

 8
1. Modify the “Hello, World” applet to take four parameters named text ,
font , style and size . These specify what text to display, and what
family, style and size of the font to use. Valid values for style include:
plain, bold, italic, bolditalic. size is an integer, and must be parsed (see
CheckerApplet for an example). If any of the parameters is unspeci-
fied, use a default value.

2. Implement an applet that contains a single button. When the user clicks
on that button, display your name at location (100, 100) on the applet.
The code used to illustrate the event handler earlier in this chapter can
be used as the basis for this application. Add a string identifier to hold
your name and initialize it to an empty string in the init method. In
the actionPerformed method, assign your name to the string. The
repaint method will force redrawing of the applet. Place this method
right after your name has been assigned. Display the string in the paint
method. Ensure that the following import statements are included at the
beginning of the program:

EXERCISE

import java.awt.event.*;
import java.applet.Applet;
import java.awt.*;

▼

▼
▼ APPENDIX A

Hypertext Markup
Language (HTML)
OVERVIEW
This appendix contains a brief overview of some common HTML tags,
as well as standard Netscape extensions. Many of the Netscape extensions
have been submitted for inclusion in the HTML standard.

164 JAVA PROGRAMMING: PART 1
➤➤➤ HTML HISTORY AND SGML

HTML is an application of the ISO certified Standard Generalized Markup
Language (SGML) standard. SGML was first published in 1988 as a stan-
dard for electronic document exchange, archival and processing. There are
other de facto standards that have the same objectives, such as Adobe’s
Acrobat, or Microsoft’s RTF (Rich Text Format).

As a subset of SGML, HTML is much simplified. SGML documents are
generally more complex and programming-like than HTML documents.
You can use SGML to define HTML, which allows for greater standardiza-
tion and interchangeability. HTML’s advantage comes from its combination
of SGML tags and contructs and standard English text markup notation.
HTML is therefore easy to interpret, yet powerful enough for its purpose.
The HTML standard is maintained by the Internet Engineering Task Force
(IETF).

The next sections list some common HTML tags, and their usage.

APPENDIX A: Hypertext Markup Language (HTML) 165

A
P

P
E

N
D

IX
 A
➤➤➤STRUCTURE

➤➤➤HEAD ELEMENTS

Tag Description Comments

<HTML></HTML> Document type Should surround whole document

<TITLE></TITLE> Document title Should be in header

<HEAD></HEAD> Document header

<BODY></BODY> Body

<!-- text --> Comment (not displayed by the browser)

Tag Description Comments

<ISINDEX> Searchable Document Adds search prompt, only works if docu-
ment is setup for search

<BASE HERF=”URL”> Document’s base URL

<LINK REV=”text”REL=”text”

<HREF=”URL”> Relationship

<META> Meta information

<NEXTID> Identifier Used by HTML editors, not humans

<ISINDEX PROMPT= “text”> Prompt text Netscape extension

166 JAVA PROGRAMMING: PART 1
➤➤➤FORMATTING: BLOCKS AND SEPARATORS

➤➤➤FORMATTING: PHYSICAL

Tag Description Comments

<Hn></Hn> Headings n may be a value from 1 to 6

<Hn ALIGN=LEFT|CENTER|RIGHT>
</Hn>

Align heading HTML 3

<P></P> Paragraph Usually double line break. Closing tag is
optional.

<P ALIGN=LEFT|CENTER|RIGHT>
</P>

Align text HTML 3

<ADDRESS></ADDRESS> Address field Frequently in italics

<BLOCKQUOTE></BLOCKQUOTE> Quotation Usually indented

<PRE></PRE> Preformatted Display text as-is; line breaks are
retained

<PRE WIDTH=n></PRE> Width n is the number of characters

<CENTER></CENTER> Center Netscape

 Link break A single line break

Tag Description Comments

 Bold

<I></I> Italic

<S></S> Strikeout Not widely implemented

<U></U> Underline Not widely implemented

<TT></TT> Typewriter Monospaced font

<BLINK></BLINK> Blink Netscape

<FONT COLOR=”color specs” SIZE=n
FACE=”typeface name”>

Font size, color, typeface Netscape, n=1-7
HTML 3

<BASEFONT SIZE=n> Base font size Netscape, n=1-7; default is 3

APPENDIX A: Hypertext Markup Language (HTML) 167

A
P

P
E

N
D

IX
 A
➤➤➤LIST

➤➤➤NETSCAPE LIST EXTENSIONS

Tag Description Comments

 List Item Use in UL, OL, MENU, and DIR

 Unordered List Use before each list item

 Ordered List Use before each list item

<MENU></MENU> Menu List Use before each list item

<DIR></DIR> Directory List Use before each list item

<DT> Term Used with Definition Lists (DL)

<DD> Definition Used with Definition Lists (DL)

<DL></DL> Definition List Use DT and DD, not LI

Tag Description Comments

<UL TYPE=DISC|CIR-
CLE|SQUARE>

Bullet type Entire list

<LI TYPE=DISC|CIRCLE|SQUARE> Bullet type Current and following items

<OL TYPE=A|a|I|i|1> Number type Entire list

<LI TYPE=A|a|I|i|1> Number type Current and following items

<OL VALUE=n> Initial number Entire list

<LI VALUE=n> Initial number Current and following items

168 JAVA PROGRAMMING: PART 1
➤➤➤LINKS

➤➤➤IMAGES

Tag Description Comments

 Link

 Link to specific location Destination is in another document

 Link to specific location Destination is in current document

<A HREF=mailto:user@host Link for mail send Brings up the browser’s mail applet
with address set

<A HREF=news:newsgroup Link to newsgroup Brings up the browser’s news reader
and opens that group

 Define location

Tag Description Comments

 Display Image

IMG Attributes

ALIGN=TOP|BOTTOM|MIDDLE|RIGHT|
LEFT|ABSMIDDLE|BASELINE|TEXTTTOP

Alignment some are HTML 3

ALT=”text” Alternate text Text to display if image is not
displayed

BORDER=”pixels” Pixel size of border

ISMAP Imagemap Requires a mapfile

APPENDIX A: Hypertext Markup Language (HTML) 169

A
P

P
E

N
D

IX
 A
➤➤➤FORMS

Tag Description Comments

<FORM ACTION=”URL”

METHOD=GET|POST></FORM> Define form

Select

<SELECT attributes></SELECT> Selection field Pulldown selection list

Select Attributes

NAME=”value” Field label value is the name of the input field

SIZE=n #of options Not implemented in all browsers

MULTIPLE Multiple selections
allowed

Can select more than one

<OPTION>option text Option Item that can be selected

<OPTION SELECTED>option text Default option

Text Area

<TEXTAREA attributes>
</TEXTAREA>

Multiple line input

Textarea Attributes

ROWS=nCOLS=n Size of box

NAME=”value” Field label value is the name of the input field

Input

<INPUT attributes> Input field

Input Attributes

TYPE=”TEXT|HIDDEN|IMAGE|
PASSWORD|CHECKBOX|RADIO|
SUBMIT|RESET”

Input type

NAME=”value” Field label value is the name of the input field

CHECKED Sets default to checked For use with checkboxes and
radioboxes

SIZE=n Box size in characters For use with TEXT

MAXLENGTH=n Maximum length for
input

For use with TEXT

170 JAVA PROGRAMMING: PART 1
➤➤➤TABLES (HTML 3)

➤➤➤MISCELLANEOUS NETSCAPE EXTENSIONS

Tag Description Comments

<TABLE></TABLE> Define Table

<TABLE BORDER></TABLE> Table Border Draw borders around table

Table Row <TR>

<TR attribute></TR> Table Row

TR Attributes

ALIGN=LEFT|RIGHT|CENTER Horizontal alignment

VALIGN=TOP|MIDDLE|BOTTOM Vertical alignment

Table Cell<TD>and Header<TH>

<TD attribute></TD> Table cell Must appear within table rows

<TH attribute></TH> Table header

TD and TH Attributes

ALIGN=LEFT|RIGHT|CENTER Horizontal alignment

VALIGN=TOP|MIDDLE|BOTTOM Vertical alignment

NOWRAP No line breaks

COLSPAN=n Columns to span

ROWSPAN=n Rows to span

<CAPTION></CAPTION> Table caption

<CAPTION ALIGN=TOP|BOTTOM> Location Above or below table

Tag Description Comments

<BODY BGCOLOR=”#nnn” Background color order is red/green/blue

<BODY BACKGROUND=”URL” Background picture

<BODY TEXT=”#nnn”> Text color

<BODY LINK=”#nnn”> Link color

<BODY VLINK=”#nnn”> Visited link

<BODY ALINK=”#nnn”> Active link

<BR CLEAR=LEFT|RIGHT|ALL> Clear text wrap

<NOBR> No break Prevents line breaks

<WBR> Word break Where line may be broken

APPENDIX A: Hypertext Markup Language (HTML) 171

A
P

P
E

N
D

IX
 A
➤➤➤JAVA APPLETS

➤➤➤JAVA SCRIPT

Tag Description Comments

<APPLET attributes></APPLET> Run Java applet

APPLET ATTRIBUTES

ALIGN={“left” | “right” | “top” | “middle”
| “bottom”

Applet alignment Tells browser where the
applet should be placed rela-
tive to entire browser frame

ALT=”string” Default text Text to show if browser
doesn’t support Java

CODE=”URL” Applet program Applet program, ending with
“.class”

CODEBASE=”URL” Applet location Needed if .class file not
found in same directory as
URL

HEIGHT=integer Applet pixel height

WIDTH=integer Applet pixel width

<PARAM attributes></PARAM>

Param Attributes

NAME=”parameter name” Applet param name Applet will ask for the value
for the param of this name

VALUE=”parameter value” Applet param value This value is always speci-
fied and returned to program
as a string

Tag Description Comments

<SCRIPT attributes></SCRIPT> Run Script Designed to support new scripts in
the future

SCRIPT ATTRIBUTES

LANGUAGE=”JavaScript” Specifies which lan-
guage is being used

Tells browser that the language code
that follows is Java Script

function func_name(form)
{...}

Script The actual script is embedded at this
location in the HTML document

▼

▼
▼ APPENDIX B

Java Sample
OVERVIEW
This appendix contains a sample Java applet. It comes from the demos
supplied with the Java Development Kit. The applet can be viewed
using any java-capable browser or using the Applet Viewer, which is
part of the JDK release. To run this applet with the Applet Viewer, just
specify the URL with the appletviewer command. See the course
postings for a downloadable version of the applet.

174 JAVA PROGRAMMING: PART 1
➤➤➤ USAGE AND COPYRIGHT
NOTIFICATION

Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you (“Licensee”) a non-exclusive, royalty free, license to use,
modify and redistribute this software in source and binary code form, pro-
vided that i) this copyright notice and license appear on all copies of the
software; and ii) Licensee does not utilize the software in a manner which is
disparaging to Sun.

This software is provided “AS IS,” without a warranty of any kind. ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDEN-
TAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This software is not designed or intended for use in on-line control of air-
craft, air traffic, aircraft navigation or aircraft communications; or in the
design, construction, operation or maintenance of any nuclear facility. Lic-
ensee represents and warrants that it will not use or redistribute the Software
for such purposes.

APPENDIX B: Java Sample 175

A
P

P
E

N
D

IX
 B
➤➤➤THE XYZAPP.JAVA SOURCE

/*
 * @(#)XYZApp.java1.3 96/12/06
 * A set of classes to parse, represent and display Chemical compounds in
 * .xyz format (see http://chem.leeds.ac.uk/Project/MIME.html)
 */
import java.applet.Applet;
import java.awt.Image;
import java.awt.Event;
import java.awt.Graphics;
import java.awt.Dimension;
import java.io.StreamTokenizer;
import java.io.InputStream;
import java.io.BufferedInputStream;
import java.io.IOException;
import java.net.URL;
import java.util.Hashtable;
import java.awt.image.IndexColorModel;
import java.awt.image.ColorModel;
import java.awt.image.MemoryImageSource;
/** The representation of a Chemical .xyz model */
class XYZChemModel {
 float vert[];
 Atom atoms[];
 int tvert[];
 int ZsortMap[];
 int nvert, maxvert;
 static Hashtable atomTable = new Hashtable();
 static Atom defaultAtom;
 static {

atomTable.put(“c”, new Atom(0, 0, 0));
atomTable.put(“h”, new Atom(210, 210, 210));
atomTable.put(“n”, new Atom(0, 0, 255));
atomTable.put(“o”, new Atom(255, 0, 0));
atomTable.put(“p”, new Atom(255, 0, 255));
atomTable.put(“s”, new Atom(255, 255, 0));
atomTable.put(“hn”, new Atom(150, 255, 150)); /* !!*/
defaultAtom = new Atom(255, 100, 200);

 }
 boolean transformed;
 Matrix3D mat;
 float xmin, xmax, ymin, ymax, zmin, zmax;
 XYZChemModel () {

mat = new Matrix3D();
mat.xrot(20);
mat.yrot(30);

 }

176 JAVA PROGRAMMING: PART 1
 /** Create a Cehmical model by parsing an input stream */
 XYZChemModel (InputStream is) throws Exception
 {
 this();
 StreamTokenizer st;
 st = new StreamTokenizer(new BufferedInputStream(is, 4000));
 st.eolIsSignificant(true);
 st.commentChar('#');
 int slot = 0;

 try
 {
scan:
 while (true)
 {
 switch (st.nextToken())
 {
 case StreamTokenizer.TT_EOF:
 break scan;
 default:
 break;
 case StreamTokenizer.TT_WORD:
 String name = st.sval;
 double x = 0, y = 0, z = 0;
 if (st.nextToken() == StreamTokenizer.TT_NUMBER)
 {
 x = st.nval;
 if (st.nextToken() == StreamTokenizer.TT_NUMBER)
 {
 y = st.nval;
 if (st.nextToken() == StreamTokenizer.TT_NUMBER)
 z = st.nval;
 }
 }
 addVert(name, (float) x, (float) y, (float) z);
 while(st.ttype != StreamTokenizer.TT_EOL &&
 st.ttype != StreamTokenizer.TT_EOF)
 st.nextToken();
 } // end Switch
 } // end while
 is.close();
 } // end Try
 catch(IOException e) {}
 if (st.ttype != StreamTokenizer.TT_EOF)
 throw new Exception(st.toString());
 } // end XYZChemModel()
 /** Add a vertex to this model */
 int addVert(String name, float x, float y, float z) {

int i = nvert;
if (i >= maxvert)

APPENDIX B: Java Sample 177

A
P

P
E

N
D

IX
 B
 if (vert == null) {
maxvert = 100;
vert = new float[maxvert * 3];
atoms = new Atom[maxvert];

 } else {
maxvert *= 2;
float nv[] = new float[maxvert * 3];
System.arraycopy(vert, 0, nv, 0, vert.length);
vert = nv;
Atom na[] = new Atom[maxvert];
System.arraycopy(atoms, 0, na, 0, atoms.length);
atoms = na;

 }
Atom a = (Atom) atomTable.get(name.toLowerCase());
if (a == null) a = defaultAtom;
atoms[i] = a;
i *= 3;
vert[i] = x;
vert[i + 1] = y;
vert[i + 2] = z;
return nvert++;

 }
 /** Transform all the points in this model */
 void transform() {

if (transformed || nvert <= 0)
 return;
if (tvert == null || tvert.length < nvert * 3)
 tvert = new int[nvert * 3];
mat.transform(vert, tvert, nvert);
transformed = true;

 }
 /** Paint this model to a graphics context. It uses the matrix associated

with this model to map from model space to screen space.
The next version of the browser should have double buffering,
which will make this *much* nicer */

 void paint(Graphics g) {
if (vert == null || nvert <= 0)
 return;
transform();
int v[] = tvert;
int zs[] = ZsortMap;
if (zs == null) {
 ZsortMap = zs = new int[nvert];
 for (int i = nvert; --i >= 0;)

zs[i] = i * 3;
}
/*
 * I use a bubble sort since from one iteration to the next, the sort
 * order is pretty stable, so I just use what I had last time as a
 * “guess” of the sorted order. With luck, this reduces O(N log N)

178 JAVA PROGRAMMING: PART 1
 * to O(N)
 */
for (int i = nvert - 1; --i >= 0;) {
 boolean flipped = false;
 for (int j = 0; j <= i; j++) {

int a = zs[j];
int b = zs[j + 1];
if (v[a + 2] > v[b + 2]) {
 zs[j + 1] = a;
 zs[j] = b;
 flipped = true;
}

 }
 if (!flipped)

break;
}
int lg = 0;
int lim = nvert;
Atom ls[] = atoms;
if (lim <= 0 || nvert <= 0)
 return;
for (int i = 0; i < lim; i++) {
 int j = zs[i];
 int grey = v[j + 2];
 if (grey < 0)

grey = 0;
 if (grey > 15)

grey = 15;
 // g.drawString(names[i], v[j], v[j+1]);
 atoms[j/3].paint(g, v[j], v[j + 1], grey);
 // g.drawImage(iBall, v[j] - (iBall.width >> 1), v[j + 1] -
 // (iBall.height >> 1));
}

 }
 /** Find the bounding box of this model */
 void findBB() {

if (nvert <= 0)
 return;
float v[] = vert;
float xmin = v[0], xmax = xmin;
float ymin = v[1], ymax = ymin;
float zmin = v[2], zmax = zmin;
for (int i = nvert * 3; (i -= 3) > 0;) {
 float x = v[i];
 if (x < xmin)

xmin = x;
 if (x > xmax)

xmax = x;
 float y = v[i + 1];
 if (y < ymin)

APPENDIX B: Java Sample 179

A
P

P
E

N
D

IX
 B
ymin = y;
 if (y > ymax)

ymax = y;
 float z = v[i + 2];
 if (z < zmin)

zmin = z;
 if (z > zmax)

zmax = z;
}
this.xmax = xmax;
this.xmin = xmin;
this.ymax = ymax;
this.ymin = ymin;
this.zmax = zmax;
this.zmin = zmin;

 }
}
/** An applet to put a Cehmical model into a page */
public class XYZApp extends Applet implements Runnable {
 XYZChemModel md;
 boolean painted = true;
 float xfac;
 int prevx, prevy;
 float xtheta, ytheta;
 float scalefudge = 1;
 Matrix3D amat = new Matrix3D(), tmat = new Matrix3D();
 String mdname = null;
 String message = null;
 Image backBuffer;
 Graphics backGC;
 Dimension backSize;
 private synchronized void newBackBuffer() {

backBuffer = createImage(size().width, size().height);
backGC = backBuffer.getGraphics();
backSize = size();

 }
 public void init() {

mdname = getParameter(“model”);
try {
 scalefudge = Float.valueOf(getParameter(“scale”)).floatValue();
} catch(Exception e) {
};
amat.yrot(20);
amat.xrot(20);
if (mdname == null)
 mdname = “model.obj”;
resize(size().width <= 20 ? 400 : size().width,
 size().height <= 20 ? 400 : size().height);
newBackBuffer();

 }

180 JAVA PROGRAMMING: PART 1
 public void run() {
InputStream is = null;
try {
 Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
 is = new URL(getDocumentBase(), mdname).openStream();
 XYZChemModel m = new XYZChemModel (is);
 Atom.setApplet(this);
 md = m;
 m.findBB();
 float xw = m.xmax - m.xmin;
 float yw = m.ymax - m.ymin;
 float zw = m.zmax - m.zmin;
 if (yw > xw)

xw = yw;
 if (zw > xw)

xw = zw;
 float f1 = size().width / xw;
 float f2 = size().height / xw;
 xfac = 0.7f * (f1 < f2 ? f1 : f2) * scalefudge;
} catch(Exception e) {
 e.printStackTrace();
 md = null;
 message = e.toString();
}
try {
 if (is != null)

is.close();
} catch(Exception e) {
}
repaint();

 }
 public void start() {

if (md == null && message == null)
 new Thread(this).start();

 }
 public void stop() {
 }
 public boolean mouseDown(Event e, int x, int y) {

prevx = x;
prevy = y;
return true;

 }
 public boolean mouseDrag(Event e, int x, int y) {

tmat.unit();
float xtheta = (prevy - y) * (360.0f / size().width);
float ytheta = (x - prevx) * (360.0f / size().height);
tmat.xrot(xtheta);
tmat.yrot(ytheta);
amat.mult(tmat);
if (painted) {

APPENDIX B: Java Sample 181

A
P

P
E

N
D

IX
 B
 painted = false;
 repaint();
}
prevx = x;
prevy = y;
return true;

 }
 public void update(Graphics g) {

if (backBuffer == null)
 g.clearRect(0, 0, size().width, size().height);
paint(g);

 }
 public void paint(Graphics g) {

if (md != null) {
 md.mat.unit();
 md.mat.translate(-(md.xmin + md.xmax) / 2,

 -(md.ymin + md.ymax) / 2,
 -(md.zmin + md.zmax) / 2);

 md.mat.mult(amat);
 // md.mat.scale(xfac, -xfac, 8 * xfac / size().width);
 md.mat.scale(xfac, -xfac, 16 * xfac / size().width);
 md.mat.translate(size().width / 2, size().height / 2, 8);
 md.transformed = false;
 if (backBuffer != null) {

if (!backSize.equals(size()))
 newBackBuffer();
backGC.setColor(getBackground());
backGC.fillRect(0,0,size().width,size().height);
md.paint(backGC);
g.drawImage(backBuffer, 0, 0, this);

 }
 else

md.paint(g);
 setPainted();
} else if (message != null) {
 g.drawString(“Error in model:”, 3, 20);
 g.drawString(message, 10, 40);
}

 }
 private synchronized void setPainted() {

painted = true;
notifyAll();

 }
 private synchronized void waitPainted()
 {
 while (!painted)
 {
 try
 {
 wait();

182 JAVA PROGRAMMING: PART 1
 }
 catch (InterruptedException e) {}
 }
 painted = false;
 }
} // end class XYZApp
class Atom {
 private static Applet applet;
 private static byte[] data;
 private final static int R = 40;
 private final static int hx = 15;
 private final static int hy = 15;
 private final static int bgGrey = 192;
 private final static int nBalls = 16;
 private static int maxr;
 private int Rl;
 private int Gl;
 private int Bl;
 private Image balls[];
 static {

data = new byte[R * 2 * R * 2];
int mr = 0;
for (int Y = 2 * R; --Y >= 0;) {
 int x0 = (int) (Math.sqrt(R * R - (Y - R) * (Y - R)) + 0.5);
 int p = Y * (R * 2) + R - x0;
 for (int X = -x0; X < x0; X++) {

int x = X + hx;
int y = Y - R + hy;
int r = (int) (Math.sqrt(x * x + y * y) + 0.5);
if (r > mr)
 mr = r;
data[p++] = r <= 0 ? 1 : (byte) r;

 }
}
maxr = mr;

 }
 static void setApplet(Applet app) {

applet = app;
 }
 Atom(int Rl, int Gl, int Bl) {

this.Rl = Rl;
this.Gl = Gl;
this.Bl = Bl;

 }
 private final int blend(int fg, int bg, float fgfactor) {

return (int) (bg + (fg - bg) * fgfactor);
 }
 private void Setup() {

balls = new Image[nBalls];
byte red[] = new byte[256];

APPENDIX B: Java Sample 183

A
P

P
E

N
D

IX
 B
red[0] = (byte) bgGrey;
byte green[] = new byte[256];
green[0] = (byte) bgGrey;
byte blue[] = new byte[256];
blue[0] = (byte) bgGrey;
for (int r = 0; r < nBalls; r++) {
 float b = (float) (r+1) / nBalls;
 for (int i = maxr; i >= 1; --i) {

float d = (float) i / maxr;
red[i] = (byte) blend(blend(Rl, 255, d), bgGrey, b);
green[i] = (byte) blend(blend(Gl, 255, d), bgGrey, b);
blue[i] = (byte) blend(blend(Bl, 255, d), bgGrey, b);

 }
 IndexColorModel model = new IndexColorModel(8, maxr + 1,

red, green, blue, 0);
 balls[r] = applet.createImage(

new MemoryImageSource(R*2, R*2, model, data, 0, R*2));
}

 }
 void paint(Graphics gc, int x, int y, int r) {

Image ba[] = balls;
if (ba == null) {
 Setup();
 ba = balls;
}
Image i = ba[r];
int size = 10 + r;
gc.drawImage(i, x - (size >> 1), y - (size >> 1), size, size, applet);

 }
}

▼

▼
▼ APPENDIX C

Java Class Hierarchy
OVERVIEW
The Java Class Hierarchy is shown in the next series of pages. Generally,
pages are divided by packages, although some packages are too large to fit
on a single page. The boxes that are not part of the class library with the
centered text serve as keys to the packages represented on that particular
page.

186 JAVA PROGRAMMING: PART 1
➤➤➤ JAVA CLASS HIERARCHY

FIGURE 9
KEY

Class

Interface

Extends

Implements

* - Duplicated

APPENDIX C: Java Class Hierarchy 187

A
P

P
E

N
D

IX
 C
Object

Boolean

Character

Class

ClassLoader

Compiler

Math

Number

Double

Float

Integer

Long

Process

Runt ime

SecurityManager

String

StringBuffer

System

Thread

ThreadGroup

Throwable

Runnable

java.lang

188 JAVA PROGRAMMING: PART 1
��
��Object (java.lang)

File

FileDescriptor

InputStream

ByteArraryInputStream

FileInputStream

FilterInputStream

BufferedInputStream

DataInputStream

LineNumberInputStream

PushbackInputStream

PipedInputStream

SequenceInputStream

StringBufferInputStream

OutputStream

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStream

PrintStream

PipedOutputStream

RandomAccessFile

StreamTokenizer

DataInput*

DataOutput*

DataInput*

DataInput*

FileNameFilter

java.io

IOException

EOFException

FileNotFoundException

InterruptedIOException

��
��
��
Exception (java.lang)

���
���
���java.lang

APPENDIX C: Java Class Hierarchy 189

A
P

P
E

N
D

IX
 C
StreamTokenizer

ContentHandler

DatagramPacket

DatagramSocket

InetAddress

ServerSocket

Socket

SocketImpl

URL

URLConnect ion

URLEncoder

URLStreamHandler

SocketImpFactory

URLStreamHandlerFactory

ContentHandlerFactory

java.net

MalformedURLExcept ion

ProtocolException

SocketException

UnknownHostExcept ion

UnknowenServiceException

���
���
���IOException (java.io)

��
��
��

Exception (java.lang)

���
���
���java.lang
���
���
���java.io

190 JAVA PROGRAMMING: PART 1
Throwable

Error��
��
��AWTError

LinkageError

ClassFormatError

IncompatableClassChangeError

AbstractMethodError

I l legalAccessError

InstantiationError

ClassCircularityError

NoSuchFieldError

NoSuchMethodError

NoClassDefFoundError

Unsatisf iedLinkError

VerifyError

ThreadDeath

VirtualMachineError

InternalError

OutOfMemoryError

StackOverf lowError

UnknownError

java.lang
���
���java.awt

APPENDIX C: Java Class Hierarchy 191

A
P

P
E

N
D

IX
 C
���
���Object (java.lang)

ColorModel

DirectColorModel

IndexColorModel

CropImageFilter

RGBImageFilter

FilteredImageSource

MemoryImageSource

PixelGrabber

ImageFilter

ImageProducer*

ImageProducer*

ImageConsumer*

ImageConsumer*
���
���
���Cloneable*

java.awt.image
���
���java.lang

192 JAVA PROGRAMMING: PART 1
Object (java.lang)

BorderLayout

CardLayout

CheckBoxGroup

Component

Button

Canvas

Checkbox

Choice

Color

Container

Panel
���
���
���Applet

Window

Dialog

FileDialog

Frame

Label

List

Scrollbar

TextComponent

TextArea

TextField

LayoutManager*

LayoutManager*

��
��ImageObserver*

MenuContainer*

java.awt
��
��java.awt.image
��
��
��

java.applet

���
���
���AppletContext
���
���AppletStub
���
���
���AudioClip

APPENDIX C: Java Class Hierarchy 193

A
P

P
E

N
D

IX
 C
Dimension

Event

FlowLayout

FontMetrics

Graphics

GridBagConstraints

GridBagLayout

GridLayout

Font

Image

Insets

MediaTracker

MenuComponent

MenuBar

MenuItem

Menu

CheckBoxMenuItem

Point

Polygon

Rectangle

Toolkit

LayoutManager*

MenuContainer*

��
��
��Cloneable*

LayoutManager*

LayoutManager*

��
��Cloneable*

MenuContainer*

java.awt
��
��
��java.lang

194 JAVA PROGRAMMING: PART 1
BitSet

Date

Dictionary

HashTable

Properties

Observable

Random

StringTokenizer

Vector

Stack

���
���
���Cloneable*

��
��
��Cloneable*

���
���
���
���
Cloneable*

Enumerat ion

Observer

java.util
��
��
��Object (java.lang)

��
��
��java.lang

▼

▼
▼ ANSWERS

To Review Questions

196 JAVA PROGRAMMING: PART 1
➤➤➤ LESSON 2

Review questions, page 46

1. javac

2. Browsers usually run Java applets, though several programs (including
appletviewer and HotJava) can also run Java applets.

3. <applet code="name-of-class" width=w height=h>

4. False. Java applications require a main method, but Java applets do not.

5. False. import merely allows programmers to type shorter names when
accessing classes or methods.

➤➤➤ LESSON 3

Review questions, page 74

1. a. int

b.int

c. long

d. double

e. double

2. a. The & operator always evaluates both its left and right operands. The
&& operator always evaluates its left operand, then evaluates its right
operand only if the result of the left operand is true.

b. The >> operator fills the high bits of the result with the sign bit of the
operand, retaining the original sign in the result. (This is an arithmetic
right shift, because it is equivalent to division by a power of two.) The
>>> operator fills the high bits of the result with zero. (This is a logical
right shift.)

3. The variable named half has gone out of scope at the close of the com-
pound statement within the do..while loop, but it appears in a rela-
tional expression afterward.

ANSWERS: To Review Questions 197

A
N

S
W

E
R

S

➤➤➤ LESSON 4

Review questions, page 91

1. The declaration is as follows:

2. The following two lines are needed:

3. There may be only one public class in any particular source file.

➤➤➤ LESSON 5

Review questions, page 103

1. A class with default protection can be accessed (and instantiated) only
by other classes in the same package.

2. final

3. static

➤➤➤ LESSON 6

Review questions, page 117

1. The length data member is read-only, and as a result can not be
explicitly modified.

2. The two methods are:

Animal Lion = new Animal(500, 45);

Lion.weight = 250;
Lion.length = 35;

new_sport = sport.concat(“ball”);
// or
new_sport = sport + “ball”;

198 JAVA PROGRAMMING: PART 1
3. StringBuffers are needed to modify character arrays, since regular
Strings are immutable.

➤➤➤ LESSON 7

Review questions, page 136

1. The declarations are as follows:

2. Both protected and private protected members are accessi-
ble to derived classes. However, a protected member is accessible to
any class in the same package, while a private protected member
is not.

3. The super keyword is used in a derived class constructor to call the
base class’s constructor.

➤➤➤ LESSON 8

Review questions, page 160

1. java.applet.Applet

2. getParameter

public class Animal
{
}

public class Dog
extends Animal

{
}

public class Bulldog
extends Dog

{
}

ANSWERS: To Review Questions 199

A
N

S
W

E
R

S

3. The HTML code is:

<APPLET CODE=”Shape.class” WIDTH=200 HEIGHT=100>
<PARAM NAME=”color” VALUE=”red”>
<PARAM NAME=”size” VALUE=”10”>
</APPLET>

	Java Programming: Part 1
	Table of Contents
	Lesson 1
	Fundamental Aspects of Programming
	What Is Programming?
	Types of Programming
	The Common Language Core
	Program Structure

	Lesson 2
	The Java Environment
	Introduction
	Java Characteristics
	Application/Applet Development
	Tools and Packages

	Lesson 3
	Java Basics
	Language Basics
	Expressions
	Statements

	Lesson 4
	Classes in Java
	Java Is Object-Oriented
	Instantiating a Class
	Class-Type Variables
	Operations on Class-Type Variables
	The null Value
	Member Access
	Class Definitions

	Lesson 5
	Classes in Java—II
	Method Overloading
	Constructors
	Encapsulation
	Access Specifiers
	Comparing Objects
	Class Variables
	Class Methods
	Finalization

	Lesson 6
	Arrays and Strings
	Java Arrays
	Array Constants
	Using Arrays
	Copying Array Elements
	String Objects
	String Methods
	String Concatenation
	Converting Objects to Strings
	Converting Strings to Numbers

	Lesson 7
	Inheritance
	Introduction to Inheritance
	Protected Access
	Overriding Methods
	Constructor Chaining
	Inheritance and Finalization
	Abstract Classes
	Interfaces
	Casting Between Class Types

	Lesson 8
	Writing Java Applets
	What Is an Applet?
	The Applet Class
	The Delegation Event Model— Action Events
	The paint() Method
	The Graphics Class
	Java Fonts
	Drawing Lines and Shapes
	Drawing with Color
	The Color Class

	Appendix A
	Hypertext Markup Language (HTML)
	HTML History and SGML
	Structure
	Head Elements
	Formatting: Blocks and Separators
	Formatting: Physical
	List
	Netscape List Extensions
	Links
	Images
	Forms
	Tables (HTML 3)
	Miscellaneous Netscape Extensions
	Java Applets
	Java Script

	Appendix B
	Java Sample
	Usage and Copyright Notification
	The XYZApp.java Source

	Appendix C
	Java Class Hierarchy
	Java Class Hierarchy

	Answers
	To Review Questions
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7
	Lesson 8

