ON THE L² CLASSIFICATION OF A SECOND-ORDER MATRIX DIFFERENTIAL EQUATION

BIKAN BHAGAT

Department of Mathematics, University of Al-Fateh, Tripoli, Libya

(Received 26 July 1978)

We consider the second-order matrix differential equation $(N - \lambda) \phi = 0$, $(0 \le x < \infty)$ and discuss the sufficient conditions on the coefficients under which the equation is not limit-2 at infinity.

81. Let N denote the matrix differential operator

$$N \equiv \begin{pmatrix} -\frac{d}{dx} \left(p_0(x) \frac{d}{dx} \right) + p_1(x) & r(x) \\ r(x) & -\frac{d}{dx} \left(q_0(x) \frac{d}{dx} \right) + q_1(x) \end{pmatrix} \dots (1.1)$$

and ϕ a vector having two components $U \equiv U(x)$ and $V \equiv V(x)$ represented as a column matrix $\begin{pmatrix} U \\ V \end{pmatrix}$.

 $p_0(x)$, $q_0(x)$, $p_1(x)$, $q_1(x)$ and r(x) are all real-valued functions of x defined in $[0, \infty)$ satisfying

- (i) $p_0(x)$, $q_0(x)$ are continuous and possess continuous derivatives on [0, X] for all X > 0:
- (ii) $p_0(x)$, $q_0(x) > 0$ for all $x \in [0, \infty)$;
- (iii) $p_1(x), q_1(x), r(x) \in L[0, X]$ for all X > 0.

In an earlier paper the author (Bhagat 1969) has shown that for each λ such that $im\lambda \neq 0$, the matrix differential equation

$$(N-\lambda)\phi=0 \quad (0\leqslant x<\infty) \qquad \qquad \dots (1.2)$$

has at least two linearly independent solutions which belong to L^2 [0, ∞). Equation (1.2) may have three or all the four linearly independent solutions belonging to L^2 [0, ∞).

We say that the eqn. (1.2) is limit-2, limit-3 or limit-4 at infinity according as it has two, three or four linearly independent solutions belonging to L^2 [0, ∞). For similar classification of fourth order differential equations one may refer to Everitt (1962, 1963).

Everitt (1972) has discussed the limit-circle classification of second-order differential equation

$$My \equiv -(py')' + qy = \lambda y, \quad (0 \le x < \infty)$$

and he has proved that, if

- (a) p is absolutely continuous on [0, X] for all X > 0;
- (b) $q > -kx^{4/3}$ almost everywhere on $[0, \infty)$;
- (c) $|p| < mx^{2/3}$ for all $x \in [0, \infty)$;

where k and m are non-negative constants, then the formally self-adjoint fourth-order differential equation

$$\psi^{(4)}(x) - (p(x)\psi^{(1)}(x))^{(1)} + (q(x) - \lambda)\psi(x) = 0 \quad (0 \le x < \infty)$$

has exactly two linearly independent solutions, for each λ such that $im\lambda \neq 0$, which belong to $L^2[0, \infty)$.

Shaw and Bhagat (1974) have proved that under certain conditions to be satisfied by the coefficients the eqn. (1.2) has exactly two linearly independent solutions for each λ such that $im\lambda \neq 0$, which belong to L^2 [0, λ). One can also refer to Gadamsi and Mahto (1978) for another theorem on the limit-2 case.

In the present paper, we first state and prove sufficient conditions on the coefficients under which eqn. (1.2) is not limit-2 at infinity (§3). In §4 we discuss eqn. (1.2) in which the coefficients are of the form ax^{α} .

§2. Let D denote the subset of L^2 [0, ∞) of vectors defined by

$$y(x) = \begin{pmatrix} U(x) \\ V(x) \end{pmatrix} \in D$$
 if

- (a) $y(x) \in L^2[0, \infty);$
- (b) y'(x) is absolutely continuous in $[0, \infty)$;
- (c) $Ny(x) \in L^2[0, \infty)$.

Let $[y_1y_2](x)$ denote the bilinear concomitant of two vectors

$$y_1(x) = \begin{pmatrix} U_1(x) \\ V_1(x) \end{pmatrix}$$
 and $y_2(x) = \begin{pmatrix} U_2(x) \\ V_2(x) \end{pmatrix}$

defined by (Shaw and Bhagat 1974, §2)

$$[y_1y_2](x) = p_0(x) \left(U_1^{(1)} \bar{U}_2 - U_1\bar{U}_2^{(1)} \right) + q_0(x) \left(V_1^{(1)} \bar{V}_2 - V_1\bar{V}_2^{(1)} \right). \tag{2.1}$$

Green's formula for these vectors is given by

$$\int_{0}^{X} (y_{1}^{T} N \bar{y}_{2} - \bar{y}_{2}^{T} N y_{1}) dx = [y_{1} y_{2}] (X) - [y_{1} y_{2}] (0). \qquad ... (2.2)$$

From (2.2) it follows that $[y_1y_2](X)$ tends to a finite limit as $X \to \infty$ for all $y_1, y_2 \in D$.

It follows from Shaw and Bhagat (1974, §2) that eqn. (1.2) has exactly two linearly independent solutions for each λ such that $im\lambda \neq 0$, which belong to L^2 [0, ∞), i.e. (1.2) is limit-2 at ∞ , if and only if

$$\lim_{X \to \infty} [y_1 y_2](X) = 0 \qquad ...(2.3)$$

for all $y_1, y_2 \in D$.

§3. We now prove the following theorem:

Theorem — Let $p_0(x)$, $q_0(x)$, $p_1(x)$, $q_1(x)$, r(x) in eqn. (1.2) satisfy the conditions (i), (ii) and (iii) of $\S1$ and also satisfy the following conditions

- (a) $p'_0(x)$, $q'_0(x)$, $p'_1(x)$, $q'_1(x)$ are absolutely continuous on [0, X] for all X > 0;
- (b) $p''_0(x), q''_0(x), p''_1(x), q''_1(x) \in L^2[0, X]$ for all X > 0;
- (c) $p_1(x)$, $q_1(x) < 0$ for all $x \in [0, \infty)$;
- (d) $\binom{(-p_0p_1)^{-1/4}}{(-q_0q_1)^{-1/4}}$ and $\binom{r(-p_0p_1)^{-1/4}}{r(-q_0q_1)^{-1/4}} \in L^2[0,\infty);$

(e)
$${p_0(p_0p_1)'(-p_0p_1)^{-5/4}\}' \choose {q_0(q_0q_1)'(-q_0q_1)^{-5/4}\}'} \in L^2[0, \infty);$$

then eqn. (1.2) is not limit-2 at ∞ .

In order to establish that (1.2) is not limit-2 at infinity it is sufficient to show that there are vectors $y_1, y_2 \in D$ such that

$$\lim_{X \to \infty} [y_1 y_2] (X) \neq 0. \tag{3.1}$$

Let us take $y_1(x) = y_2(x)$ and determine $y_1(x)$ by

$$y_1(x) = \begin{pmatrix} (-p_0(x) \ p_1(x))^{-1/4} \ \exp\left[i\int_0^x \left\{-\frac{p_1(t)}{p_0(t)}\right\}^{1/2} dt\right] \\ (-q_0(x) \ q_1(x))^{-1/4} \exp\left[i\int_0^x \left\{-\frac{q_1(t)}{q_0(t)}\right\}^{1/4} dt\right] \end{pmatrix}, \ x \in [0, \infty). \quad \dots(3.2)$$

By actual calculation (details being omitted) it can be shown that

$$[y_1y_2](x) = -4i \quad (x \in [0, \infty)),$$
 ...(3.3)

 $y_1 \in L^2[0, \infty)$, by conditions (c) and (d),

 y'_{1} is absolutely continuous in $[0, \infty)$, by condition (a),

and

$$\int_{0}^{\infty} |Ny_{1}|^{2} dx \leq \int_{0}^{\infty} \left[\left\{ \frac{1}{4} \left(p_{0}(-p_{0}p_{1})^{-5/4} \left(p_{0}p_{1} \right)' \right)' + r(-q_{0}q_{1})^{-1/4} \right\}^{2} + \left\{ \frac{1}{4} \left(q_{0}(-q_{0}q_{1})^{-5/4} \left(q_{0}q_{1} \right)' \right)' + r(-p_{0}p_{1})^{-1/4} \right\}^{2} \right] dx$$

$$< \infty, \text{ by conditions (d) and (e)}.$$

Hence $Ny_1 \in L^2[0, \infty)$.

Thus $y_1 \in D$.

Now from (3.1) and (3.3) it follows that the differential eqn. (1.2) is not limit-2 at ∞ .

§4. Theorem — In (1.1) let $p_0(x) = a_1 x^{\alpha_1}$, $q_0(x) = a_2 x^{\alpha_2}$, $p_1(x) = -b_1 x^{\beta_1}$, $q_1(x) = -b_2 x^{\beta_2}$ and $r(x) = c x^{\gamma}$ where a_1 , a_2 , b_1 , b_2 , c, a_1 , a_2 , β_1 , β_2 and γ are real constants satisfying the conditions

- (i) $a_1 \neq 0$, $a_2 \neq 0$: a_1 and b_1 are of the same sign and so are a_2 and b_2 ;
- (ii) $\alpha_1 + \beta_1 > 2$, $\alpha_2 + \beta_2 > 2$;
- (iii) $\alpha_1, \alpha_2 < 2$;
- (iv) $4\gamma < \min (\alpha_1 + \beta_1 2, \alpha_2 + \beta_2 2);$

then eqn. (1.2) is not limit-2 at ∞ .

We shall define vectors $y_1(x)$ and $y_2(x)$ in D satisfying

$$\lim_{X\to\infty} [y_1y_2](x) \neq 0.$$

Let us take

$$y_1(x) = y_2(x) = \begin{pmatrix} H_1(x) \exp \left[i \int_a^x S_1(t) dt\right] \\ H_2(x) \exp \left[i \int_a^x S_2(t) dt\right] \end{pmatrix},$$

where

$$H_{1}(x) = (a_{1}b_{1}x^{\alpha_{1}+\beta_{1}})^{-1/4}, \quad H_{2}(x) = (a_{2}b_{2}x^{\alpha_{2}+\beta_{2}})^{-1/4}$$

$$S_{1}(x) = \left(\frac{b_{1}}{a_{1}}x^{\beta_{1}-\alpha_{1}}\right)^{1/2}, \quad S_{2}(x) = \left(\frac{b_{2}}{a_{2}}x^{\beta_{2}-\alpha_{2}}\right)^{1/2}.$$

$$(4.1)$$

Then by actual calculation

$$[y_1y_2](x) = -4i \ (a \le x < \infty),$$
 ...(4.2)

and

$$Ny_{1} = \begin{pmatrix} (-a_{1}x^{\alpha} \mathbf{1}H'_{1}(x))' \exp \left[i \int_{a}^{x} S_{1}(t) dt\right] + cx^{\gamma}H_{2}(x) \exp \left[i \int_{a}^{x} S_{2}(t) dt\right] \\ (-a_{2}x^{\alpha} \mathbf{1}H'_{2}(x))' \exp \left[i \int_{a}^{x} S_{2}(t) dt\right] + cx^{\gamma}H_{1}(x) \exp \left[i \int_{a}^{x} S_{1}(t) dt\right] \end{pmatrix}$$
...(4.3)

By condition (i), $H_1(x)$, $H_2(x)$, $S_1(x)$ and $S_2(x)$ are all real valued.

By condition (ii)

$$\begin{pmatrix} H_1(x) \\ H_2(x) \end{pmatrix} \in L^2 [a, \infty)$$

and so

$$y_1(x) \in L^2[a, \infty).$$

Now

$$H_1^{(r)}(x) = O(x^{-((\alpha_1+\beta_1)/4)-r})$$
 and $H_2^{(r)}(x) = O(x^{-((\alpha_2+\beta_2)/4)-r}),$
 $0 \le r \le 2.$

Hence

$$\int_{a}^{\infty} |Ny_{1}|^{2} dx \leq \int_{a}^{\infty} \{ [(-a_{1}x^{\alpha_{1}}H'_{1})' + cx^{\gamma}H_{2}]^{2} + [(-a_{2}x^{\alpha_{2}}H'_{2})' + cx^{\gamma}H_{1}]^{2} \} dx$$

$$< \infty, \text{ by conditions (ii), (iii) and (iv).}$$

Thus $y_1 \in D$ and $\lim_{x \to \infty} [y_1 y_2](x) \neq 0$.

This completes the proof of the theorem.

It has not been possible for the author to find sufficient conditions under which eqn. (1.2) is limit-3 or conditions under which it is limit-4.

REFERENCES

- Bhagat, B. (1969). Some problems on a pair of singular second-order differential equations. Proc. natn. Inst. Sci. India, A 35, 232-44.
- Everitt, W. N. (1962). Integrable square solutions of ordinary differential equations II. Quart. J. Math., Oxford (2), 13, 217-20.
- ———— (1963). Fourth-order singular differential equations. Math. Ann., 149, 320-40.

- Gadamsi, A. M., and Mahto, K. R. (1978). On the limit-2 case of second-order matrix differential equations. *Indian J. pure appl. Math.*, 9, 653-60.
- Shaw, S., and Bhagat, B. (1974). On a second-order matrix differential operator. *Proc. Indian Acad. Sci.*, 79 A, 213-22.