
Netprog 2002 Java RMI 1

Remote Method Invocation
Part II

Based on Java Network Programming and
Distributed Computing Chapter 11

Also based on Sun’s Online Java Tutorial

Netprog 2002 Java RMI 2

Topics

• RMI in Detail
– Packages and classes (and exceptions!)

• The RMI Registry
• Implementing callbacks
• “Activating” remote objects
• Distributed garbage collection
• Deployment issues

Netprog 2002 Java RMI 3

RMI Architecture
(Wollrath and Waldo)

Netprog 2002 Java RMI 4

RMI Packages Overview
• java.rmi

– General RMI classes and exceptions.
• java.rmi.server

– RMI server-specific classes and interfaces.
• java.rmi.registry

– To access, launch, and locate RMI registries.
• java.rmi.activation

– To start remote services on demand.
• java.rmi.dgc

– To support distributed object garbage collection.

Netprog 2002 Java RMI 5

java.rmi Package

• Remote interface
– To identify a service as remotely accessible.

• RemoteException class
– java.io.IOException subclass, superclass of

most RMI exceptions.

• MarshalledObject class
– Includes the annotated codebase for dynamic

class loading

Netprog 2002 Java RMI 6

java.rmi Package

• Naming class
– Static methods to assign or retrieve object

references of the RMI object registry
(rmiregistry).

– bind(String url, Remote obj)
• Inserts a registry entry and binds it to given obj.

– rebind(String url, Remote obj)
• Does not throw AlreadyBoundException.

– Remote lookup(String url)
• Returns a reference for the remote object

– Also unbind(url), list(url)

Netprog 2002 Java RMI 7

java.rmi Package

• RMISecurityManager class
– Dynamic class loading requires a security

manager to be registered with the JVM.
– Default security manager protects rogue code

from:
• Initiating network connections
• Masquerading as servers
• Gaining file access

– More restrictive than applets, but may be modified
to grant additional privileges by using a security
policy file.

Netprog 2002 Java RMI 8

java.rmi Exceptions

• ServerError class
– An error in the RMI server was thrown (e.g. out of memory)

• ServerException class
– When a method call to an RMI server throws a
RemoteException, a ServerException is thrown.

• UnexpectedException class
– Used by clients to represent an exception thrown by the

remote method but not declared in the RMI interface.

Netprog 2002 Java RMI 9

java.rmi Exceptions

• MarshalException class
– Exception while marshalling parameters of a remote method call, or

when sending a return value.
– At the client end, it is impossible to tell whether the method was

invoked by the remote system --a subsequent invocation may
cause the method to be invoked twice.

• UnmarshalException class
– Exception while unmarshalling arguments of a remote method call,

or when sending a return value.

• NoSuchObjectException class
– A remote object no longer exists.
– This indicates the method never reached the object, and may be re-

transmitted at a later date, without duplicate invocations.

Netprog 2002 Java RMI 10

java.rmi Exceptions

• AccessException class
– Thrown by naming to indicate that a registry operation

cannot be performed.

• AlreadyBoundException class
– A remote object is already bound to a registry entry.

• ConnectException class
– Inability to connect to a remote service, such as a registry.

• NotBoundException class
– Attempts to lookup or unbind a non-existent registry entry.

Netprog 2002 Java RMI 11

java.rmi Exceptions

• UnknownHostException class
– A client making a remote method request can’t resolve the

hostname.

• StubNotFoundException class
– Stub not in local file system or externally (if using dynamic

class loading).

• ConnectIOException class
– Inability to connect to a remote service to execute a remote

method call.

Netprog 2002 Java RMI 12

java.rmi.server Package

• RemoteRef interface
– A handle to a remote object. Used by

stubs to issue method invocations on
remote objects.

• RMIClientSocketFactory interface
• RMIServerSocketFactory interface

Netprog 2002 Java RMI 13

java.rmi.server Package

• RMISocketFactory class
– Implements RMI client and server socket factory

interfaces.
– Enables customized sockets to be used by RMI,

e.g., providing encryption, or communication
through firewalls.

– By default, three mechanisms are attempted:
• A direct TCP connection
• An HTTP connection using the port number of the

service (e.g., http://server:1095/).
• A modified HTTP connection using default port and a

CGI script (e.g., http://server:80/cgi-bin/java-rmi.cgi)

Netprog 2002 Java RMI 14

java.rmi.server Package

• RemoteObject class
– Implements the Remote interface.

– Overrides Object methods making them “remote”
aware, e.g., equals, hashCode, toString.

– RemoteRef getRef()
• returns a reference to the object.

– static Remote toStub(Remote obj)
• Returns a stub for the object. If invoked before the object

is exported, throws a NoSuchObjectException.

Netprog 2002 Java RMI 15

java.rmi.server Package
• RemoteServer class

– Extends RemoteObject. Superclass of
Activatable and UnicastRemoteObject.

– String getClientHost()
• Returns the location of the RMI client.
• Allows to handle requests differently

based on the IP address of the client.
– setLog(OutputStream out) logs RMI calls

including time, date, IP address, and method.
– PrintStream getLog() returns the RMI

logging stream; writing to it automatically includes
the date and time.

Beware of IP spoofing!Beware of IP spoofing!

Netprog 2002 Java RMI 16

java.rmi.server Package

• UnicastRemoteObject class
– Extends RemoteServer. Base class for

most RMI service implementations.
– Provides specialized constructors to export

a service on a specific port, or to use a
specialized socket factory.

• UnicastRemoteObject(port)
• UnicastRemoteObject(port, csf, ssf);

Netprog 2002 Java RMI 17

java.rmi.registry

• Registry interface
– For accessing a registry service.

• LocateRegistry class
– To create a new RMI registry, or locate an existing

one.
– A registry can be launched by a server (rather

than separately using rmiregistry).
• createRegistry([[port][,csf,ssf]])
• getRegistry([host][,port]) Default host is localhost

and default port is 1099

Default host is localhost
and default port is 1099

Netprog 2002 Java RMI 18

Implementing callbacks

• “Mr. Broker, whenever the stock price
for MyDot.com gets out of the $5-$100
range, give me a phone call!”

Netprog 2002 Java RMI 19

Defining a Listener (client)
interface

• This Remote interface defines the
method(s) to be invoked from the server
to the client, when an event happens.

Netprog 2002 Java RMI 20

Defining a Service (server)
interface

• This is the same as the normal RMI
Remote interface to export a given
service, except that methods for adding
and removing a Listener remote
object are included.

Netprog 2002 Java RMI 21

Implementing the Listener
interface

• The code is the same as a traditional
RMI client, except that a Listener object
is registered with the remote service.

• How?
– Invoking a remote method on the server (
register(Listener)) and passing the
Listener object as an argument to it.

Recall that Remote parameter
passing is by reference!

Recall that Remote parameter
passing is by reference!

Netprog 2002 Java RMI 22

Implementing the Service
interface

• This is your normal remote service
implementation. It needs to:
– Keep a list of event listeners
– Provide methods to add and remove

listeners
– Implement the remote service
– Detect relevant state changes and notify

listeners as appropriate.

Netprog 2002 Java RMI 23

BankAccountMonitor Example

• The goal is to notify a bank account monitor
whenever the balance becomes less than
$100.

• See:
– BankAccountMonitor interface
– BankAccount interface
– BankAccountImpl class
– BankAccountMonitorImpl class
– Deposit class

Netprog 2002 Java RMI 24

Remote Object Activation

• Why?
– To free resources from servers with

seldom-used services.
– To enable devices with limited resources to

activate multiple kinds of services.

Netprog 2002 Java RMI 25

java.rmi.activation

• Activatable class
• ActivationDesc class
• ActivationID class
• ActivationGroup class
• ActivationGroupDesc class
• ActivationGroupID class
• ActivationSystem interface

Netprog 2002 Java RMI 26

Remote Object Activation

Transparent to RMI clients.
• Remote interface/client code is the same.

Server code needs modifications:
• Extends Activatable class
• Constructor receives ActivationID, MarshalledObject.
• Main method steps:

– Create ActivationGroupDesc
– Register activation group descriptor with ActivationSystem
– Create an ActivationGroup
– Create an ActivationDesc with class name, codebase
– Register the activation descriptor with ActivationSystem
– Register the stub (Returned in previous step) in registry.

Netprog 2002 Java RMI 27

Remote Object Activation

For an example and more documentation,
please see:

http://java.sun.com/j2se/1.4/docs/guide/rmi/activation.html

Also, JNPDC textbook pp.365-376.

Netprog 2002 Java RMI 28

Distributed Garbage
Collection

• Remote service developers don’t need to
track remote object clients to detect
termination.

• RMI uses a reference-counting garbage
collection algorithm similar to Modula-3's
Network Objects. (See "Network Objects" by
Birrell, Nelson, and Owicki, Digital Equipment
Corporation Systems Research Center
Technical Report 115, 1994.)

Netprog 2002 Java RMI 29

java.rmi.dgc

• Lease class
– A remote object is offered to a client for a short

duration of time (called a lease). When the lease
expires, the object can be safely garbage-
collected.

• VMID class
– To uniquely identify a Java virtual machine.
– boolean isUnique() represents whether the

generated VMID is truly unique. If and only if an
IP address can be determined for the host
machine.

Netprog 2002 Java RMI 30

Distributed Garbage
Collection

• When a reference to a remote object is
created in a JVM, a referenced
message is sent to the object server.

• A reference count keeps track of how
many local references there are.

• When the last reference is discarded,
an unreferenced message is sent to
the server.

Netprog 2002 Java RMI 31

Distributed Garbage
Collection

• When a Remote object is not
referenced by any client, the run-time
refers to it as a weak reference.

• The weak reference allows the JVM’s
garbage collector to discard the object if
no other local references exist.

Network partitions may
cause premature Remote
object collections.

Network partitions may
cause premature Remote
object collections.

Netprog 2002 Java RMI 32

RMI Deployment Issues

• Dynamic Class Loading
– What happens if a new object is passed

using RMI, and the defining class is not
available to the remote system?

– Recall that you can pass an object with an
interface type (e.g., Runnable) which can
have multiple implementations.

– We need a way to download such code
dynamically.

Netprog 2002 Java RMI 33

Dynamic Class Loading

Already
loaded?

Return
class

SecurityManager
installed?

Fetch class
From network

Yes

Yes
No

No

Throw ClassNotFoundException

Netprog 2002 Java RMI 34

Where to download code
from?

• Setting the system property
– java.rmi.server.codebase

• For example:
java -Djava.rmi.server.codebase
=http://www.cs.rpi.edu/~joe/classes/
MyRemoteImpl

A single line!!Don’t forget to
install a Security
Manager

Don’t forget to
install a Security
Manager

Netprog 2002 Java RMI 35

RMI Architecture
Revisited

Netprog 2002 Java RMI 36

RMI Deployment: Differences
in Java Virtual Machines

• Microsoft JVMs do not generally support RMI
– even though RMI is part of the “core” Java
API.
– Solution: A patch to IE is available.

• JDK1.02 and JDK1.1 are not RMI-compatible.
– UnicastRemoteServer replaced by
UnicastRemoteObject.

– Solution: Upgrade!

Netprog 2002 Java RMI 37

RMI Deployment: Differences
in Java Virtual Machines

• JDK1.1 and Java 2 are not RMI-compatible.
– New RMISecurityManager is more strict.

– Solutions:
• Remove the RMISecurityManager entirely (which

disables dynamic class loading).
• Replace the RMISecurityManager with a custom one,

enabling restricted access to the network and file system.
• Specify a security policy file, which allows network

access and (optionally) file access.
Best option!Best option!

Netprog 2002 Java RMI 38

Sample Security Policy File

grant {
permission java.net.SocketPermission

"*:1024-65535", "connect,accept";
permission java.net.SocketPermission

"*:80", "connect";
};

Netprog 2002 Java RMI 39

Another Security Policy File

grant {
permission java.net.SocketPermission

"*:1024-65535", "connect,accept";
permission java.io.FilePermission

"c:\\home\\ann\\public_html\\classes\\-",
"read";

permission java.io.FilePermission
"c:\\home\\chu\\public_html\\classes\\-",
"read";
};

Netprog 2002 Java RMI 40

Yet Another Security Policy
File

grant {
permission java.security.AllPermission;

};
Not recommended in
combination with
dynamic class loading!

Not recommended in
combination with
dynamic class loading!

Netprog 2002 Java RMI 41

Where does RMI read the
security policy from?

• Setting the system property
– java.security.policy

• For example:
java -Djava.rmi.server.codebase
=http://www.cs.rpi.edu/~joe/classes/
-Djava.security.policy=my.policy
MyRemoteImpl

A single line!!

Netprog 2002 Java RMI 42

Deployment Issues: RMI,
Applets, and Firewalls

• Applets cannot bind to TCP ports
– an RMI service cannot run inside an applet.

• Applets cannot connect to arbitrary hosts
– An applet can only be an RMI client to services

hosted by the HTTP server serving the applet.

• Firewalls restrict connections to arbitrary
ports.
– A solution is to tunnel RMI requests through HTTP

(a CGI script is available from Sun’s Java RMI
page).

An order of magnitude slower!An order of magnitude slower!

